Simulators and Simulations for Extracorporeal Membrane Oxygenation: An ECMO Scoping Review.

Wytze C Duinmeijer, Libera Fresiello, Justyna Swol, Pau Torrella, Jordi Riera, Valentina Obreja, Mateusz Puślecki, Marek Dąbrowski, Jutta Arens, Frank R Halfwerk
Author Information
  1. Wytze C Duinmeijer: Engineering Organ Support Technologies, Department of Biomechanical Engineering, TechMed Centre, University of Twente, 7522 LW Enschede, The Netherlands. ORCID
  2. Libera Fresiello: Cardiovascular and Respiratory Physiology Group, TechMed Centre, University of Twente, 7522 NH Enschede, The Netherlands. ORCID
  3. Justyna Swol: Department of Respiratory Medicine, Paracelsus Medical University Nuremberg, 90419 Nuremberg, Germany. ORCID
  4. Pau Torrella: Critical Care Department, Vall d'Hebron University Hospital, 08035 Barcelona, Spain. ORCID
  5. Jordi Riera: Critical Care Department, Vall d'Hebron University Hospital, 08035 Barcelona, Spain. ORCID
  6. Valentina Obreja: Cardiothoracic Intensive Care Unit, University of California, Los Angeles, CA 90095, USA. ORCID
  7. Mateusz Puślecki: Department of Medical Rescue, Poznan University of Medical Sciences, 60-806 Poznan, Poland.
  8. Marek Dąbrowski: Polish Society of Medical Simulation, 62-400 Slupca, Poland.
  9. Jutta Arens: Engineering Organ Support Technologies, Department of Biomechanical Engineering, TechMed Centre, University of Twente, 7522 LW Enschede, The Netherlands. ORCID
  10. Frank R Halfwerk: Engineering Organ Support Technologies, Department of Biomechanical Engineering, TechMed Centre, University of Twente, 7522 LW Enschede, The Netherlands. ORCID

Abstract

High-volume extracorporeal membrane oxygenation (ECMO) centers generally have better outcomes than (new) low-volume ECMO centers, most likely achieved by a suitable exposure to ECMO cases. To achieve a higher level of training, simulation-based training (SBT) offers an additional option for education and extended clinical skills. SBT could also help to improve the interdisciplinary team interactions. However, the level of ECMO simulators and/or simulations (ECMO sims) techniques may vary in purpose. We present a structured and objective classification of ECMO sims based on the broad experience of users and the developer for the available ECMO sims as low-, mid-, or high-fidelity. This classification is based on overall ECMO sim fidelity, established by taking the median of the definition-based fidelity, component fidelity, and customization fidelity as determined by expert opinion. According to this new classification, only low- and mid-fidelity ECMO sims are currently available. This comparison method may be used in the future for the description of new developments in ECMO sims, making it possible for ECMO sim designers, users, and researchers to compare accordingly, and ultimately improve ECMO patient outcomes.

Keywords

References

  1. J Extra Corpor Technol. 2012 Dec;44(4):250-5 [PMID: 23441568]
  2. J Thorac Dis. 2018 Aug;10(8):5073-5079 [PMID: 30233882]
  3. Simul Healthc. 2013 Aug;8(4):221-8 [PMID: 23588057]
  4. Acad Med. 2014 Mar;89(3):387-92 [PMID: 24448038]
  5. Artif Organs. 2021 Apr;45(4):399-410 [PMID: 33034071]
  6. Am J Respir Crit Care Med. 2014 Sep 1;190(5):488-96 [PMID: 25062496]
  7. J Extra Corpor Technol. 2019 Jun;51(2):94-99 [PMID: 31239583]
  8. Am J Respir Crit Care Med. 2015 Apr 15;191(8):894-901 [PMID: 25695688]
  9. Ann Intern Med. 2018 Oct 2;169(7):467-473 [PMID: 30178033]
  10. Anesthesiology. 1988 Sep;69(3):387-94 [PMID: 3415018]
  11. Adv Neonatal Care. 2014 Apr;14(2):103-9 [PMID: 24675629]
  12. Artif Organs. 2021 Sep;45(9):1061-1067 [PMID: 33656783]
  13. Circulation. 2019 Dec 10;140(24):2019-2037 [PMID: 31815538]
  14. JAMA. 2022 Feb 22;327(8):737-747 [PMID: 35191923]
  15. Membranes (Basel). 2021 May 31;11(6): [PMID: 34073086]
  16. Ann Transl Med. 2017 Feb;5(4):70 [PMID: 28275615]
  17. Compr Physiol. 2016 Mar 15;6(2):975-1003 [PMID: 27065172]
  18. Intensive Care Med. 2022 Oct;48(10):1326-1337 [PMID: 35945343]
  19. Acute Med Surg. 2017 Jan;4(1):79-88 [PMID: 28163923]
  20. Simul Healthc. 2014 Dec;9(6):339-49 [PMID: 25188485]
  21. Int J Artif Organs. 2015 Jan;38(1):23-30 [PMID: 25588762]
  22. Intensive Care Med. 2022 Feb;48(2):213-224 [PMID: 34921625]
  23. J Crit Care. 2016 Dec;36:178-186 [PMID: 27546769]
  24. ATS Sch. 2022 Sep 30;3(3):468-484 [PMID: 36312813]
  25. Adv Simul (Lond). 2022 Mar 18;7(1):8 [PMID: 35303963]
  26. J Nurs Educ. 2010 Jan;49(1):29-35 [PMID: 19810672]
  27. N Engl J Med. 2011 Nov 17;365(20):1905-14 [PMID: 22087681]
  28. J Extra Corpor Technol. 2021 Sep;53(3):208-213 [PMID: 34658414]
  29. Front Med Technol. 2022 Jun 21;4:909990 [PMID: 35800469]
  30. Intensive Care Med. 2021 Aug;47(8):887-895 [PMID: 34156477]
  31. West J Nurs Res. 2009 Apr;31(3):312-29 [PMID: 19176404]

Grants

  1. 20003297 UKA - SPP2014: Towards an Implantable Lung/Deutsche Forschungsgemeinschaft

Word Cloud

Created with Highcharts 10.0.0ECMOsimsfidelityclassificationnewtrainingextracorporealcentersoutcomeslevelSBTimprovemaybasedusersavailablelow-simHigh-volumemembraneoxygenationgenerallybetterlow-volumelikelyachievedsuitableexposurecasesachievehighersimulation-basedoffersadditionaloptioneducationextendedclinicalskillsalsohelpinterdisciplinaryteaminteractionsHoweversimulatorsand/orsimulationstechniquesvarypurposepresentstructuredobjectivebroadexperiencedevelopermid-high-fidelityoverallestablishedtakingmediandefinition-basedcomponentcustomizationdeterminedexpertopinionAccordingmid-fidelitycurrentlycomparisonmethodusedfuturedescriptiondevelopmentsmakingpossibledesignersresearcherscompareaccordinglyultimatelypatientSimulatorsSimulationsExtracorporealMembraneOxygenation:ScopingReviewlifesupportECLSmodelsimulation

Similar Articles

Cited By