Impacts of Radio-Frequency Electromagnetic Field (RF-EMF) on Lettuce ()-Evidence for RF-EMF Interference with Plant Stress Responses.

Nam Trung Tran, Luca Jokic, Julian Keller, Jens Uwe Geier, Ralf Kaldenhoff
Author Information
  1. Nam Trung Tran: Applied Plant Sciences, Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany. ORCID
  2. Luca Jokic: Applied Plant Sciences, Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany. ORCID
  3. Julian Keller: Forschungsring e.V., 64295 Darmstadt, Germany.
  4. Jens Uwe Geier: Forschungsring e.V., 64295 Darmstadt, Germany.
  5. Ralf Kaldenhoff: Applied Plant Sciences, Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany.

Abstract

The increased use of wireless technology causes a significant exposure increase for all living organisms to radio frequency electromagnetic fields (RF-EMF). This comprises bacteria, animals, and also plants. Unfortunately, our understanding of how RF-EMF influences plants and plant physiology remains inadequate. In this study, we examined the effects of RF-EMF radiation on lettuce plants () in both indoor and outdoor environments using the frequency ranges of 1890-1900 MHz (DECT) at 2.4 GHz and 5 GHz (Wi-Fi). Under greenhouse conditions, RF-EMF exposure had only a minor impact on fast chlorophyll fluorescence kinetics and no effect on plant flowering time. In contrast, lettuce plants exposed to RF-EMF in the field showed a significant and systemic decrease in photosynthetic efficiency and accelerated flowering time compared to the control groups. Gene expression analysis revealed significant down-regulation of two stress-related genes in RF-EMF-exposed plants: violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP). RF-EMF-exposed plants had lower Photosystem II's maximal photochemical quantum yield (F/F) and non-photochemical quenching (NPQ) than control plants under light stress conditions. In summary, our results imply that RF-EMF might interfere with plant stress responses and reduced plant stress tolerance.

Keywords

References

  1. J Plant Physiol. 2016 Jan 15;190:44-53 [PMID: 26643955]
  2. Plant Signal Behav. 2010 Aug;5(8):944-7 [PMID: 20505356]
  3. Mutat Res. 2009 Jan 31;672(2):76-81 [PMID: 19028599]
  4. Protoplasma. 2016 Jul;253(4):1043-9 [PMID: 26277350]
  5. Plant J. 2002 Feb;29(4):393-403 [PMID: 11846873]
  6. Planta. 2008 Mar;227(4):883-91 [PMID: 18026987]
  7. Plant Cell Environ. 2007 Jul;30(7):834-44 [PMID: 17547655]
  8. Plant Cell Rep. 2016 Feb;35(2):439-53 [PMID: 26573680]
  9. Sci Total Environ. 2007 Dec 15;388(1-3):78-89 [PMID: 17825879]
  10. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8762-7 [PMID: 10411949]
  11. Plant Signal Behav. 2007 Nov;2(6):522-4 [PMID: 19704547]
  12. Photosynth Res. 2014 Nov;122(2):121-58 [PMID: 25119687]
  13. 3 Biotech. 2019 May;9(5):197 [PMID: 31065497]
  14. Environ Toxicol Chem. 2002 Jun;21(6):1316-22 [PMID: 12069320]
  15. J Plant Physiol. 2014 Sep 15;171(15):1436-43 [PMID: 25050479]
  16. Sci Total Environ. 2009 Oct 15;407(21):5543-7 [PMID: 19682728]
  17. Physiol Plant. 2008 Mar;132(3):384-96 [PMID: 18275469]
  18. Plant Physiol. 1999 Oct;121(2):517-24 [PMID: 10517843]
  19. Electromagn Biol Med. 2017;36(2):213-235 [PMID: 27650031]
  20. Sci Total Environ. 2016 Nov 1;569-570:489-495 [PMID: 27362630]
  21. J Plant Physiol. 2015 Mar 1;175:26-36 [PMID: 25460873]
  22. Trends Plant Sci. 2019 Jan;24(1):25-37 [PMID: 30401516]
  23. Sci Rep. 2019 Apr 23;9(1):6437 [PMID: 31015543]
  24. Pathophysiology. 2009 Aug;16(2-3):179-89 [PMID: 19272761]
  25. Plant Signal Behav. 2006 Mar;1(2):67-70 [PMID: 19521478]
  26. Environ Int. 2013 Jan;51:116-40 [PMID: 23261519]
  27. Sci Rep. 2015 Oct 12;5:14914 [PMID: 26456585]
  28. Environ Res. 2022 May 15;208:112627 [PMID: 34995546]
  29. Mar Pollut Bull. 2006;53(8-9):508-22 [PMID: 16737720]
  30. J Integr Plant Biol. 2010 Mar;52(3):332-9 [PMID: 20377694]
  31. Front Plant Sci. 2016 Nov 11;7:1679 [PMID: 27891137]
  32. Adv Appl Bioinform Chem. 2008;1:71-83 [PMID: 21918607]
  33. EMBO J. 1996 May 15;15(10):2331-42 [PMID: 8665840]

Grants

  1. RA-P 13878/Software AG Stiftung (Darmstadt)

Word Cloud

Created with Highcharts 10.0.0RF-EMFplantsplantstresssignificantfrequencylettucefloweringexposureradioelectromagneticfieldsGHzconditionstimecontrolRF-EMF-exposedincreasedusewirelesstechnologycausesincreaselivingorganismscomprisesbacteriaanimalsalsoUnfortunatelyunderstandinginfluencesphysiologyremainsinadequatestudyexaminedeffectsradiationindooroutdoorenvironmentsusingranges1890-1900MHzDECT245Wi-FigreenhouseminorimpactfastchlorophyllfluorescencekineticseffectcontrastexposedfieldshowedsystemicdecreasephotosyntheticefficiencyacceleratedcomparedgroupsGeneexpressionanalysisrevealeddown-regulationtwostress-relatedgenesplants:violaxanthinde-epoxidaseVDEzeaxanthinepoxidaseZEPlowerPhotosystemII'smaximalphotochemicalquantumyieldF/Fnon-photochemicalquenchingNPQlightsummaryresultsimplymightinterfereresponsesreducedtoleranceImpactsRadio-FrequencyElectromagneticFieldLettuce-EvidenceInterferencePlantStressResponsesphotosynthesis

Similar Articles

Cited By