Advances in Peptide-Based Hydrogel for Tissue Engineering.

Negar Bakhtiary, Behafarid Ghalandari, Farnaz Ghorbani, Swastina Nath Varma, Chaozong Liu
Author Information
  1. Negar Bakhtiary: Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK. ORCID
  2. Behafarid Ghalandari: State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China. ORCID
  3. Farnaz Ghorbani: Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK. ORCID
  4. Swastina Nath Varma: Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK.
  5. Chaozong Liu: Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK. ORCID

Abstract

The development of peptide-based materials has emerged as one of the most challenging aspects of biomaterials in recent years. It has been widely acknowledged that peptide-based materials can be used in a broad range of biomedical applications, particularly in tissue engineering. Among them, hydrogels have been attracting considerable interest in tissue engineering because they mimic tissue formation conditions by providing a three-dimensional environment and a high water content. It has been found that peptide-based hydrogels have received more attention due to mimicking proteins, particularly extracellular matrix proteins, as well as the wide variety of applications they are capable of serving. It is without a doubt that peptide-based hydrogels have become the leading biomaterials of today owing to their tunable mechanical stability, high water content, and high biocompatibility. Here, we discuss in detail various types of peptide-based materials, emphasizing peptide-based hydrogels, and then we examine in detail how hydrogels are formed, paying particular attention to the peptide structures that are incorporated into the final structure. Following that, we discuss the self-assembly and formation of hydrogels under various conditions, as well as the parameters to be considered as critical factors, which include pH, amino acid composi- tion within the sequence, and cross-linking techniques. Further, recent studies on the development of peptide-based hydrogels and their applications in tissue engineering are reviewed.

Keywords

References

  1. ACS Appl Mater Interfaces. 2018 Dec 5;10(48):41046-41055 [PMID: 30475573]
  2. ACS Appl Mater Interfaces. 2019 Sep 25;11(38):34688-34697 [PMID: 31448901]
  3. Chem Sci. 2016 Apr 21;7(4):2748-2752 [PMID: 28660051]
  4. Nanoscale. 2022 Jun 23;14(24):8611-8620 [PMID: 35687044]
  5. ACS Nano. 2021 Apr 27;15(4):5819-5837 [PMID: 33760579]
  6. J Biomed Mater Res A. 2016 Apr;104(4):1002-16 [PMID: 26707893]
  7. Angew Chem Int Ed Engl. 2018 Feb 5;57(6):1537-1542 [PMID: 29266653]
  8. J Mater Chem B. 2014 Jun 28;2(24):3715-3740 [PMID: 32261720]
  9. Materials (Basel). 2019 Mar 19;12(6): [PMID: 30893951]
  10. J Nanobiotechnology. 2021 Aug 23;19(1):253 [PMID: 34425823]
  11. Front Bioeng Biotechnol. 2020 Apr 21;8:295 [PMID: 32426335]
  12. J Control Release. 2020 Jan 10;317:109-117 [PMID: 31778740]
  13. Bioact Mater. 2022 Feb 25;18:267-283 [PMID: 35387156]
  14. Adv Healthc Mater. 2019 Sep;8(17):e1900670 [PMID: 31364824]
  15. ACS Biomater Sci Eng. 2019 Sep 9;5(9):4132-4147 [PMID: 33417774]
  16. Oral Dis. 2022 Apr;28(3):723-733 [PMID: 33512051]
  17. Nat Commun. 2021 Jan 18;12(1):407 [PMID: 33462223]
  18. Chem Soc Rev. 2021 Mar 21;50(6):3957-3989 [PMID: 33587075]
  19. Adv Drug Deliv Rev. 2017 Feb;110-111:169-187 [PMID: 27356149]
  20. Chem Rev. 2020 Dec 23;120(24):13434-13460 [PMID: 33216525]
  21. Soft Matter. 2019 Feb 20;15(8):1704-1715 [PMID: 30724947]
  22. Macromol Biosci. 2021 Feb;21(2):e2000337 [PMID: 33191671]
  23. J Agric Food Chem. 2022 Jun 15;70(23):7148-7157 [PMID: 35657010]
  24. Chem Rev. 2022 May 11;122(9):9145-9197 [PMID: 35394752]
  25. J Clin Periodontol. 2023 Feb;50(2):200-219 [PMID: 36110056]
  26. Nanoscale. 2017 Aug 24;9(33):11987-11993 [PMID: 28792044]
  27. Nat Commun. 2021 Nov 19;12(1):6623 [PMID: 34799548]
  28. ACS Biomater Sci Eng. 2019 May 13;5(5):2117-2121 [PMID: 33405714]
  29. Langmuir. 2013 Oct 29;29(43):13299-306 [PMID: 24090141]
  30. Acta Mater. 2013 Feb 1;61(3):912-930 [PMID: 23457423]
  31. Polymers (Basel). 2022 Feb 28;14(5): [PMID: 35267809]
  32. J Funct Biomater. 2023 Jan 19;14(2): [PMID: 36826854]
  33. Phys Chem Chem Phys. 2022 Feb 16;24(7):4097-4115 [PMID: 34942636]
  34. Chem Soc Rev. 2016 Jan 7;45(1):24-39 [PMID: 26497225]
  35. Biotechnol Adv. 2021 Nov 15;52:107835 [PMID: 34520791]
  36. Protein Pept Lett. 2019;26(2):88-97 [PMID: 30227810]
  37. Nat Chem. 2015 Jan;7(1):30-7 [PMID: 25515887]
  38. Chemistry. 2017 Jan 23;23(5):981-993 [PMID: 27530095]
  39. Adv Drug Deliv Rev. 2020;160:52-77 [PMID: 33031897]
  40. Adv Exp Med Biol. 2016;940:167-177 [PMID: 27677513]
  41. Tissue Eng Part A. 2021 Aug;27(15-16):993-1007 [PMID: 33040713]
  42. J Biomed Mater Res A. 2003 May 1;65(2):260-70 [PMID: 12734821]
  43. Chem Soc Rev. 2016 May 21;45(10):2756-67 [PMID: 27080059]
  44. Chem Soc Rev. 2018 May 21;47(10):3721-3736 [PMID: 29697727]
  45. ACS Nano. 2019 Mar 26;13(3):2749-2772 [PMID: 30768903]
  46. Chem Soc Rev. 2010 Aug;39(8):2780-90 [PMID: 20520907]
  47. J Control Release. 2017 Jun 10;255:81-93 [PMID: 28408199]
  48. Pharmaceuticals (Basel). 2022 Aug 25;15(9): [PMID: 36145269]
  49. Gels. 2021 Dec 18;7(4): [PMID: 34940334]
  50. Biomater Sci. 2020 Jan 1;8(1):84-100 [PMID: 31696870]
  51. Bioconjug Chem. 2022 Oct 19;33(10):1785-1788 [PMID: 35900377]
  52. Tissue Eng Part A. 2019 Sep;25(17-18):1191-1201 [PMID: 31237484]
  53. J Food Drug Anal. 2019 Jan;27(1):32-47 [PMID: 30648586]
  54. Biomacromolecules. 2017 Nov 13;18(11):3514-3523 [PMID: 28721731]
  55. Chem Rev. 2022 May 11;122(9):8911-8935 [PMID: 35275612]
  56. Adv Healthc Mater. 2019 Jun;8(11):e1801374 [PMID: 30938924]
  57. J Am Chem Soc. 2006 Feb 1;128(4):1070-1 [PMID: 16433511]
  58. J Control Release. 2022 Jul;347:127-142 [PMID: 35460706]
  59. Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14215-20 [PMID: 16186493]
  60. ACS Omega. 2023 Jan 20;8(4):3551-3570 [PMID: 36743055]
  61. NPJ Regen Med. 2023 Jan 6;8(1):2 [PMID: 36609447]
  62. Chem Sci. 2018 Aug 27;9(43):8228-8233 [PMID: 30542571]
  63. Colloids Surf B Biointerfaces. 2022 Feb;210:112220 [PMID: 34840029]
  64. Acta Biomater. 2022 Mar 1;140:43-75 [PMID: 34710626]
  65. Materials (Basel). 2022 Aug 25;15(17): [PMID: 36079250]
  66. Biomaterials. 2021 Dec;279:121217 [PMID: 34781243]
  67. Biomacromolecules. 2021 May 10;22(5):2094-2106 [PMID: 33908763]
  68. ACS Macro Lett. 2018 Mar 20;7(3):318-323 [PMID: 30271674]
  69. Biomed Mater. 2021 Apr 09;16(4): [PMID: 33761488]
  70. Biomaterials. 2014 Aug;35(25):6727-38 [PMID: 24836951]
  71. Pharmaceutics. 2023 Jan 12;15(1): [PMID: 36678895]
  72. Biotechnol Adv. 2012 May-Jun;30(3):593-603 [PMID: 22041166]
  73. Nat Commun. 2022 Jan 10;13(1):137 [PMID: 35013234]
  74. Org Biomol Chem. 2017 Jul 19;15(28):5867-5876 [PMID: 28661532]
  75. Org Biomol Chem. 2014 Jun 14;12(22):3544-61 [PMID: 24756480]
  76. Am J Sports Med. 2021 Jul;49(9):2498-2508 [PMID: 34161182]
  77. Chem Soc Rev. 2010 Sep;39(9):3499-509 [PMID: 20596584]
  78. ACS Biomater Sci Eng. 2021 Dec 13;7(12):5798-5809 [PMID: 34761897]
  79. Chem Rev. 2015 Dec 23;115(24):13165-307 [PMID: 26646318]
  80. Biomaterials. 2018 Jul;171:219-229 [PMID: 29705655]
  81. Bioact Mater. 2019 Feb 13;4:120-131 [PMID: 31667440]
  82. Biomacromolecules. 2020 Jun 8;21(6):2258-2267 [PMID: 32208723]
  83. Langmuir. 2012 Dec 4;28(48):16664-70 [PMID: 23116236]
  84. J Biomed Mater Res A. 2019 Apr;107(4):893-903 [PMID: 30650239]
  85. Adv Colloid Interface Sci. 2019 Jul;269:334-356 [PMID: 31128463]
  86. Angew Chem Int Ed Engl. 2020 Mar 9;59(11):4329-4334 [PMID: 31920004]
  87. Trends Biotechnol. 2012 Mar;30(3):155-65 [PMID: 22197260]
  88. Curr Opin Biotechnol. 2020 Oct;65:197-204 [PMID: 32492515]
  89. Chem Rev. 2022 Sep 28;122(18):14085-14179 [PMID: 35921495]
  90. J Mater Chem B. 2019 Feb 21;7(7):1027-1044 [PMID: 32254770]
  91. Adv Healthc Mater. 2018 Mar;7(5): [PMID: 29115746]
  92. Int J Biol Macromol. 2021 Mar 15;173:591-606 [PMID: 33508359]
  93. Sci Rep. 2021 Feb 25;11(1):4560 [PMID: 33633122]
  94. Acta Biomater. 2022 Jul 1;146:94-106 [PMID: 35552000]
  95. Nat Chem. 2021 Sep;13(9):850-857 [PMID: 34426684]
  96. Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):E7919-E7928 [PMID: 28874575]
  97. ACS Appl Mater Interfaces. 2019 Aug 14;11(32):28681-28689 [PMID: 31328913]
  98. Biomater Sci. 2013 Nov 1;1(11):1138-1142 [PMID: 32481936]
  99. Angew Chem Int Ed Engl. 2015 Sep 14;54(38):11128-32 [PMID: 26352023]
  100. Chem Rev. 2021 Nov 24;121(22):13936-13995 [PMID: 33938738]
  101. Bioconjug Chem. 2017 Mar 15;28(3):751-759 [PMID: 28292179]

Grants

  1. 564022 - linked to Lead 559846/MRC - UCL Therapeutic Acceleration Support (TAS)
  2. 564021 - linked to Lead 557595/NIHR UCLH BRC- UCL Therapeutic Acceleration Support (TAS) Fund
  3. EP/T517793/1/Engineering and Physical Sciences Research Council via DTP CASE Programme
  4. 569576 (linked to Lead 553191)/Wellcome Trust - Translational Partnership Award - UCL Regenerative Medicine TIN Pilot Dara Fund
  5. IEC\NSFC\191253/Royal Society via an Inter-national Exchange program

Word Cloud

Created with Highcharts 10.0.0peptide-basedhydrogelstissuematerialsengineeringapplicationshighdevelopmentbiomaterialsrecentparticularlyformationconditionswatercontentattentionproteinswelldiscussdetailvariouspeptideself-assemblysequenceemergedonechallengingaspectsyearswidelyacknowledgedcanusedbroadrangebiomedicalAmongattractingconsiderableinterestmimicprovidingthree-dimensionalenvironmentfoundreceivedduemimickingextracellularmatrixwidevarietycapableservingwithoutdoubtbecomeleadingtodayowingtunablemechanicalstabilitybiocompatibilitytypesemphasizingexamineformedpayingparticularstructuresincorporatedfinalstructureFollowingparametersconsideredcriticalfactorsincludepHaminoacidcomposi-tionwithincross-linkingtechniquesstudiesreviewedAdvancesPeptide-BasedHydrogelTissueEngineering

Similar Articles

Cited By