Vision Transformers (ViT) for Blanket-Penetrating Sleep Posture Recognition Using a Triple Ultra-Wideband (UWB) Radar System.

Derek Ka-Hei Lai, Zi-Han Yu, Tommy Yau-Nam Leung, Hyo-Jung Lim, Andy Yiu-Chau Tam, Bryan Pak-Hei So, Ye-Jiao Mao, Daphne Sze Ki Cheung, Duo Wai-Chi Wong, James Chung-Wai Cheung
Author Information
  1. Derek Ka-Hei Lai: Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
  2. Zi-Han Yu: School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China.
  3. Tommy Yau-Nam Leung: Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
  4. Hyo-Jung Lim: Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
  5. Andy Yiu-Chau Tam: Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China. ORCID
  6. Bryan Pak-Hei So: Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
  7. Ye-Jiao Mao: Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
  8. Daphne Sze Ki Cheung: School of Nursing, The Hong Kong Polytechnic University, Hong Kong 999077, China. ORCID
  9. Duo Wai-Chi Wong: Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China. ORCID
  10. James Chung-Wai Cheung: Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China. ORCID

Abstract

Sleep posture has a crucial impact on the incidence and severity of obstructive sleep apnea (OSA). Therefore, the surveillance and recognition of sleep postures could facilitate the assessment of OSA. The existing contact-based systems might interfere with sleeping, while camera-based systems introduce privacy concerns. Radar-based systems might overcome these challenges, especially when individuals are covered with blankets. The aim of this research is to develop a nonobstructive multiple ultra-wideband radar sleep posture recognition system based on machine learning models. We evaluated three single-radar configurations (top, side, and head), three dual-radar configurations (top + side, top + head, and side + head), and one tri-radar configuration (top + side + head), in addition to machine learning models, including CNN-based networks (ResNet50, DenseNet121, and EfficientNetV2) and vision transformer-based networks (traditional vision transformer and Swin Transformer V2). Thirty participants ( = 30) were invited to perform four recumbent postures (supine, left side-lying, right side-lying, and prone). Data from eighteen participants were randomly chosen for model training, another six participants' data ( = 6) for model validation, and the remaining six participants' data ( = 6) for model testing. The Swin Transformer with side and head radar configuration achieved the highest prediction accuracy (0.808). Future research may consider the application of the synthetic aperture radar technique.

Keywords

References

  1. N Engl J Med. 1996 Jan 11;334(2):99-104 [PMID: 8531966]
  2. Sensors (Basel). 2020 Jan 20;20(2): [PMID: 31968587]
  3. Ann Intern Med. 2005 Feb 1;142(3):187-97 [PMID: 15684207]
  4. Sensors (Basel). 2019 Apr 30;19(9): [PMID: 31052295]
  5. Sci Rep. 2018 Aug 29;8(1):13053 [PMID: 30158545]
  6. Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1-4 [PMID: 30440284]
  7. IEEE Trans Pattern Anal Mach Intell. 2022 Feb 18;PP: [PMID: 35180075]
  8. Int J Environ Res Public Health. 2022 Feb 13;19(4): [PMID: 35206290]
  9. Sensors (Basel). 2022 Sep 28;22(19): [PMID: 36236462]
  10. Front Psychiatry. 2022 Sep 16;13:913213 [PMID: 36186887]
  11. PLoS One. 2021 Jul 15;16(7):e0254841 [PMID: 34264999]
  12. Fac Rev. 2021 Apr 19;10:40 [PMID: 34046644]
  13. Eur Arch Otorhinolaryngol. 2006 Oct;263(10):946-50 [PMID: 16802139]
  14. PeerJ. 2019 Jan 25;7:e6364 [PMID: 30701143]
  15. Sensors (Basel). 2022 Nov 01;22(21): [PMID: 36366107]
  16. Neurol Int. 2011 Nov 29;3(3):e15 [PMID: 22368774]
  17. Entropy (Basel). 2022 Dec 22;25(1): [PMID: 36673161]
  18. Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:461-465 [PMID: 30440434]
  19. Sensors (Basel). 2021 Jan 20;21(3): [PMID: 33498590]
  20. Int J Environ Res Public Health. 2022 Oct 18;19(20): [PMID: 36294072]
  21. Int J Technol Assess Health Care. 2008 Winter;24(1):120-4 [PMID: 18218177]
  22. Sensors (Basel). 2020 Mar 06;20(5): [PMID: 32155838]
  23. Sci Rep. 2022 Nov 3;12(1):18590 [PMID: 36329061]
  24. Sensors (Basel). 2019 Feb 08;19(3): [PMID: 30744003]
  25. Sleep Med Rev. 2017 Aug;34:70-81 [PMID: 27568340]
  26. IEEE J Biomed Health Inform. 2021 Apr;25(4):1305-1314 [PMID: 32960771]
  27. Am J Respir Crit Care Med. 1998 Apr;157(4 Pt 1):1204-12 [PMID: 9563740]
  28. Sensors (Basel). 2021 Aug 18;21(16): [PMID: 34450994]
  29. ISRN Otolaryngol. 2013 Oct 08;2013:670381 [PMID: 24223313]

Grants

  1. PolyU15223822/Research Grants Council of Hong Kong
  2. P0039001/The Hong Kong Polytechnic University
  3. P0033913/The Hong Kong Polytechnic University
  4. P0035896/The Hong Kong Polytechnic University

MeSH Term

Humans
Radar
Posture
Sleep Apnea, Obstructive
Machine Learning
Sleep

Word Cloud

Created with Highcharts 10.0.0sleepsidehead+topsystemsradarlearning=modelSleeppostureobstructiveapneaOSArecognitionposturesmightresearchmachinemodelsthreeconfigurationsconfigurationnetworksvisionSwinTransformerparticipantsside-lyingsixparticipants'data6crucialimpactincidenceseverityThereforesurveillancefacilitateassessmentexistingcontact-basedinterferesleepingcamera-basedintroduceprivacyconcernsRadar-basedovercomechallengesespeciallyindividualscoveredblanketsaimdevelopnonobstructivemultipleultra-widebandsystembasedevaluatedsingle-radardual-radaronetri-radaradditionincludingCNN-basedResNet50DenseNet121EfficientNetV2transformer-basedtraditionaltransformerV2Thirty30invitedperformfourrecumbentsupineleftrightproneDataeighteenrandomlychosentraininganothervalidationremainingtestingachievedhighestpredictionaccuracy0808FuturemayconsiderapplicationsyntheticaperturetechniqueVisionTransformersViTBlanket-PenetratingPostureRecognitionUsingTripleUltra-WidebandUWBRadarSystemablationstudydeepfeatureextractionmonitoring

Similar Articles

Cited By