RadarPDR: Radar-Assisted Indoor Pedestrian Dead Reckoning.

Jianbiao He, Wei Xiang, Qing Zhang, Bang Wang
Author Information
  1. Jianbiao He: Shenzhen Polytechnic (SZPT), Liuxian Avenue 7098, Shenzhen 518055, China.
  2. Wei Xiang: School of Electronic Information and Communications, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, China.
  3. Qing Zhang: Hubei International Trade Supply Chain Management Co., Ltd., Wuhan 430000, China.
  4. Bang Wang: School of Electronic Information and Communications, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, China. ORCID

Abstract

Pedestrian dead reckoning (PDR) is the critical component in indoor pedestrian tracking and navigation services. While most of the recent PDR solutions exploit in-built inertial sensors in smartphones for next step estimation, due to measurement errors and sensing drift, the accuracy of walking direction, step detection, and step length estimation cannot be guaranteed, leading to large accumulative tracking errors. In this paper, we propose a radar-assisted PDR scheme, called RadarPDR, which integrates a frequency-modulation continuous-wave (FMCW) radar to assist the inertial sensors-based PDR. We first establish a segmented wall distance calibration model to deal with the radar ranging noise caused by irregular indoor building layouts and fuse wall distance estimation with acceleration and azimuth signals measured by the inertial sensors of a smartphone. We also propose a hierarchical (PF) together with an extended Kalman filter for position and trajectory adjustment. Experiments have been conducted in practical indoor scenarios. Results demonstrate that the proposed RadarPDR is efficient and stable and outperforms the widely used inertial sensors-based PDR scheme.

Keywords

References

  1. Sensors (Basel). 2010;10(10):9163-78 [PMID: 22163402]
  2. Micromachines (Basel). 2022 Apr 13;13(4): [PMID: 35457914]
  3. Sensors (Basel). 2017 Sep 08;17(9): [PMID: 28885555]
  4. Sensors (Basel). 2015 Sep 25;15(10):24862-85 [PMID: 26404277]
  5. Sensors (Basel). 2016 Dec 15;16(12): [PMID: 27983670]
  6. Sensors (Basel). 2021 Jul 03;21(13): [PMID: 34283101]
  7. IEEE Comput Graph Appl. 2005 Nov-Dec;25(6):38-46 [PMID: 16315476]
  8. Sensors (Basel). 2013 Apr 10;13(4):4781-810 [PMID: 23575036]

Grants

  1. 2019N048/Shenzhen key technology research project: key technology research and development of high-speed and high-precision vertical five-axis machining center

Word Cloud

Created with Highcharts 10.0.0PDRindoorinertialtrackingstepestimationradarPedestriandeadreckoningpedestriansensorserrorsproposeschemeRadarPDRsensors-basedwalldistancerangingtrajectorycorrectioncriticalcomponentnavigationservicesrecentsolutionsexploitin-builtsmartphonesnextduemeasurementsensingdriftaccuracywalkingdirectiondetectionlengthguaranteedleadinglargeaccumulativepaperradar-assistedcalledintegratesfrequency-modulationcontinuous-waveFMCWassistfirstestablishsegmentedcalibrationmodeldealnoisecausedirregularbuildinglayoutsfuseaccelerationazimuthsignalsmeasuredsmartphonealsohierarchicalPFtogetherextendedKalmanfilterpositionadjustmentExperimentsconductedpracticalscenariosResultsdemonstrateproposedefficientstableoutperformswidelyusedRadarPDR:Radar-AssistedIndoorDeadReckoning

Similar Articles

Cited By

No available data.