Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation.

Seul Bi Lee, Youngtaek Hong, Yeon Jin Cho, Dawun Jeong, Jina Lee, Soon Ho Yoon, Seunghyun Lee, Young Hun Choi, Jung-Eun Cheon
Author Information
  1. Seul Bi Lee: Department of Radiology, Seoul National University Hospital, Seoul, Korea. ORCID
  2. Youngtaek Hong: CONNECT-AI R&D Center, Yonsei University College of Medicine, Seoul, Korea. ORCID
  3. Yeon Jin Cho: Department of Radiology, Seoul National University Hospital, Seoul, Korea. ORCID
  4. Dawun Jeong: CONNECT-AI R&D Center, Yonsei University College of Medicine, Seoul, Korea. ORCID
  5. Jina Lee: CONNECT-AI R&D Center, Yonsei University College of Medicine, Seoul, Korea. ORCID
  6. Soon Ho Yoon: Department of Radiology, Seoul National University Hospital, Seoul, Korea. ORCID
  7. Seunghyun Lee: Department of Radiology, Seoul National University Hospital, Seoul, Korea. ORCID
  8. Young Hun Choi: Department of Radiology, Seoul National University Hospital, Seoul, Korea. ORCID
  9. Jung-Eun Cheon: Department of Radiology, Seoul National University Hospital, Seoul, Korea. ORCID

Abstract

OBJECTIVE: We aimed to investigate whether image standardization using deep learning-based computed tomography (CT) image conversion would improve the performance of deep learning-based automated hepatic segmentation across various reconstruction methods.
MATERIALS AND METHODS: We collected contrast-enhanced dual-energy CT of the abdomen that was obtained using various reconstruction methods, including filtered back projection, iterative reconstruction, optimum contrast, and monoenergetic images with 40, 60, and 80 keV. A deep learning based image conversion algorithm was developed to standardize the CT images using 142 CT examinations (128 for training and 14 for tuning). A separate set of 43 CT examinations from 42 patients (mean age, 10.1 years) was used as the test data. A commercial software program (MEDIP PRO v2.0.0.0, MEDICALIP Co. Ltd.) based on 2D U-NET was used to create liver segmentation masks with liver volume. The original 80 keV images were used as the ground truth. We used the paired -test to compare the segmentation performance in the Dice similarity coefficient (DSC) and difference ratio of the liver volume relative to the ground truth volume before and after image standardization. The concordance correlation coefficient (CCC) was used to assess the agreement between the segmented liver volume and ground-truth volume.
RESULTS: The original CT images showed variable and poor segmentation performances. The standardized images achieved significantly higher DSCs for liver segmentation than the original images (DSC [original, 5.40%-91.27%] vs. [standardized, 93.16%-96.74%], all < 0.001). The difference ratio of liver volume also decreased significantly after image conversion (original, 9.84%-91.37% vs. standardized, 1.99%-4.41%). In all protocols, CCCs improved after image conversion (original, -0.006-0.964 vs. standardized, 0.990-0.998).
CONCLUSION: Deep learning-based CT image standardization can improve the performance of automated hepatic segmentation using CT images reconstructed using various methods. Deep learning-based CT image conversion may have the potential to improve the generalizability of the segmentation network.

Keywords

References

  1. Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:348-351 [PMID: 32874427]
  2. Radiology. 2020 Apr;295(1):4-15 [PMID: 32068507]
  3. Radiol Artif Intell. 2021 Oct 27;3(6):e210097 [PMID: 34870222]
  4. Radiology. 2020 Mar;294(3):487-489 [PMID: 31891322]
  5. Eur Radiol. 2020 Nov;30(11):5785-5793 [PMID: 32474633]
  6. Radiology. 2018 Mar;286(3):800-809 [PMID: 29309734]
  7. Front Cardiovasc Med. 2020 Jun 30;7:105 [PMID: 32714943]
  8. Nat Med. 2019 Jan;25(1):24-29 [PMID: 30617335]
  9. Biometrics. 1989 Mar;45(1):255-68 [PMID: 2720055]
  10. Radiographics. 2021 Sep-Oct;41(5):1427-1445 [PMID: 34469211]
  11. Radiol Artif Intell. 2021 Nov 10;4(1):e200152 [PMID: 35146430]
  12. Invest Radiol. 2022 May 1;57(5):308-317 [PMID: 34839305]
  13. Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22737-22745 [PMID: 31636195]
  14. Radiol Artif Intell. 2021 Oct 06;3(6):e210014 [PMID: 34870217]
  15. Diagnostics (Basel). 2020 Nov 14;10(11): [PMID: 33202680]
  16. AJR Am J Roentgenol. 2020 Dec;215(6):1403-1410 [PMID: 33052737]
  17. J Neurosurg Pediatr. 2020 Dec 01;27(2):131-138 [PMID: 33260138]
  18. PLoS Med. 2018 Nov 20;15(11):e1002686 [PMID: 30457988]
  19. Eur Radiol. 2021 Nov;31(11):8682-8691 [PMID: 33948701]
  20. J Big Data. 2021;8(1):101 [PMID: 34306963]
  21. Radiol Artif Intell. 2022 May 04;4(3):e210064 [PMID: 35652114]
  22. Circ Cardiovasc Imaging. 2019 Oct;12(10):e009214 [PMID: 31547689]
  23. Acad Radiol. 2018 Nov;25(11):1472-1480 [PMID: 29606338]
  24. Lancet Digit Health. 2020 Sep;2(9):e489-e492 [PMID: 32864600]

MeSH Term

Humans
Child
Deep Learning
Liver
Tomography, X-Ray Computed
Abdomen
Algorithms
Image Processing, Computer-Assisted

Word Cloud

Created with Highcharts 10.0.0CTimagesegmentationimagesconversionlivervolumeusingused0originallearning-basedDeepstandardizationdeepimproveperformancevariousreconstructionmethodsstandardizedvsautomatedhepatic80keVbasedexaminations1groundtruthcoefficientDSCdifferenceratiosignificantlyLearning-BasedImageOBJECTIVE:aimedinvestigatewhethercomputedtomographyacrossMATERIALSANDMETHODS:collectedcontrast-enhanceddual-energyabdomenobtainedincludingfilteredbackprojectioniterativeoptimumcontrastmonoenergetic4060learningalgorithmdevelopedstandardize142128training14tuningseparateset4342patientsmeanage10yearstestdatacommercialsoftwareprogramMEDIPPROv2MEDICALIPCoLtd2DU-NETcreatemaskspaired-testcompareDicesimilarityrelativeconcordancecorrelationCCCassessagreementsegmentedground-truthRESULTS:showedvariablepoorperformancesachievedhigherDSCs[original540%-9127%][standardized9316%-9674%]<001alsodecreased984%-9137%99%-441%protocolsCCCsimproved-0006-0964990-0998CONCLUSION:canreconstructedmaypotentialgeneralizabilitynetworkComputedTomographyStandardizationImproveGeneralizabilityHepaticSegmentationArtificialintelligenceAutomatedQualitycontrolReproducibility

Similar Articles

Cited By