A Review of the Machine Learning Algorithms for Covid-19 Case Analysis.

Shrikant Tiwari, Prasenjit Chanak, Sanjay Kumar Singh
Author Information
  1. Shrikant Tiwari: Department of Computer Science and EngineeringIndian Institute of Technology (BHU) Varanasi 221005 India. ORCID
  2. Prasenjit Chanak: Department of Computer Science and EngineeringIndian Institute of Technology (BHU) Varanasi 221005 India. ORCID
  3. Sanjay Kumar Singh: Department of Computer Science and EngineeringIndian Institute of Technology (BHU) Varanasi 221005 India. ORCID

Abstract

The purpose of this article is to see how machine learning (ML) algorithms and applications are used in the COVID-19 inquiry and for other purposes. The available traditional methods for COVID-19 international epidemic prediction, researchers and authorities have given more attention to simple statistical and epidemiological methodologies. The inadequacy and absence of medical testing for diagnosing and identifying a solution is one of the key challenges in preventing the spread of COVID-19. A few statistical-based improvements are being strengthened to answer this challenge, resulting in a partial resolution up to a certain level. ML have advocated a wide range of intelligence-based approaches, frameworks, and equipment to cope with the issues of the medical industry. The application of inventive structure, such as ML and other in handling COVID-19 relevant outbreak difficulties, has been investigated in this article. The major goal of this article is to 1) Examining the impact of the data type and data nature, as well as obstacles in data processing for COVID-19. 2) Better grasp the importance of intelligent approaches like ML for the COVID-19 pandemic. 3) The development of improved ML algorithms and types of ML for COVID-19 prognosis. 4) Examining the effectiveness and influence of various strategies in COVID-19 pandemic. 5) To target on certain potential issues in COVID-19 diagnosis in order to motivate academics to innovate and expand their knowledge and research into additional COVID-19-affected industries.

Keywords

References

  1. Wellcome Open Res. 2020 Mar 31;5:56 [PMID: 32587900]
  2. Int J Inf Technol. 2020;12(3):731-739 [PMID: 32838125]
  3. Results Phys. 2021 Feb;21:103817 [PMID: 33462560]
  4. Internet Things (Amst). 2020 Sep;11:100228 [PMID: 38620369]
  5. SN Comput Sci. 2020;1(4):197 [PMID: 33063048]
  6. Radiology. 2020 Aug;296(2):E32-E40 [PMID: 32101510]
  7. Nat Energy. 2020;5(12):1051-1052 [PMID: 33052987]
  8. Patterns (N Y). 2020 Aug 14;1(5):100074 [PMID: 32835314]
  9. J Prim Care Community Health. 2020 Jan-Dec;11:2150132720963634 [PMID: 32996368]
  10. J Am Med Dir Assoc. 2020 Nov;21(11):1533-1538.e6 [PMID: 33032935]
  11. Comput Biol Med. 2020 Sep;124:103949 [PMID: 32798922]
  12. Chaos Solitons Fractals. 2020 Oct;139:110058 [PMID: 32834611]
  13. Emerg Radiol. 2020 Dec;27(6):641-651 [PMID: 32691211]
  14. J Med Eng Technol. 2020 May;44(4):169-176 [PMID: 32401550]
  15. Avian Dis. 1970 May;14(2):330-6 [PMID: 4316767]
  16. J Med Syst. 2020 Jul 1;44(8):135 [PMID: 32607737]
  17. Chaos Solitons Fractals. 2021 Jan;142:110338 [PMID: 33041533]
  18. Appl Soft Comput. 2020 Nov;96:106610 [PMID: 32834798]
  19. Chaos Solitons Fractals. 2020 Oct;139:110050 [PMID: 32834604]
  20. Physiol Genomics. 2020 Apr 1;52(4):200-202 [PMID: 32216577]
  21. Eur J Oper Res. 2021 Dec 1;295(2):648-663 [PMID: 36569384]
  22. JAMA. 2020 Apr 21;323(15):1499-1500 [PMID: 32159735]
  23. Intern Emerg Med. 2021 Apr;16(3):749-756 [PMID: 33090353]
  24. Diabetes Res Clin Pract. 2020 Jul;165:108246 [PMID: 32502693]
  25. Sci Total Environ. 2020 Nov 10;742:140561 [PMID: 32623176]
  26. Intern Emerg Med. 2020 Nov;15(8):1435-1443 [PMID: 32812204]
  27. Sci Total Environ. 2020 Nov 15;743:140803 [PMID: 32653701]
  28. J Med Virol. 2020 Apr;92(4):401-402 [PMID: 31950516]
  29. Nat Med. 2021 Nov;27(11):2041-2047 [PMID: 34480125]
  30. Knowl Based Syst. 2020 Oct 12;205:106270 [PMID: 32834553]
  31. mBio. 2020 May 22;11(3): [PMID: 32444382]
  32. Engineering (Beijing). 2020 Oct;6(10):1122-1129 [PMID: 32837749]
  33. Stat Biopharm Res. 2020 Aug 18;12(4):506-517 [PMID: 34191983]
  34. Int Immunopharmacol. 2020 Sep;86:106705 [PMID: 32652499]
  35. Front Med (Lausanne). 2020 May 22;7:250 [PMID: 32574338]
  36. Sensors (Basel). 2018 Nov 05;18(11): [PMID: 30400627]
  37. IEEE Access. 2020 Jun 12;8:109581-109595 [PMID: 34192103]
  38. Process Biochem. 2020 Nov;98:233-240 [PMID: 32843849]
  39. JAMA. 2020 Feb 25;323(8):707-708 [PMID: 31971553]
  40. J Bone Joint Surg Am. 2020 Jul 1;102(13):e70 [PMID: 32618918]
  41. IEEE Rev Biomed Eng. 2021;14:4-15 [PMID: 32305937]
  42. Biocybern Biomed Eng. 2021 Jul-Sep;41(3):867-879 [PMID: 34108787]
  43. Bioelectron Med. 2020 Jul 10;6:14 [PMID: 32665967]
  44. BMJ. 2020 Mar 23;368:m1165 [PMID: 32205334]
  45. Expert Syst Appl. 2020 Dec 1;160:113661 [PMID: 32834556]
  46. Nat Commun. 2020 Nov 11;11(1):5710 [PMID: 33177507]
  47. BMC Res Notes. 2014 Aug 23;7:565 [PMID: 25150834]
  48. J Adolesc Health. 2020 Sep;67(3):369-375 [PMID: 32593564]
  49. J Clin Med. 2020 Jun 01;9(6): [PMID: 32492874]
  50. Process Biochem. 2021 Mar;102:150-156 [PMID: 33390763]
  51. Environ Sci Pollut Res Int. 2020 Oct;27(29):37155-37163 [PMID: 32700269]
  52. IEEE Trans Med Imaging. 2020 Aug;39(8):2584-2594 [PMID: 32730211]
  53. IEEE Access. 2020 Mar 09;8:51761-51769 [PMID: 32391240]
  54. PLoS One. 2020 Jun 26;15(6):e0235187 [PMID: 32589673]
  55. Radiology. 2020 May;295(2):E3 [PMID: 32142398]
  56. Infect Dis Model. 2020;5:622-634 [PMID: 32864516]
  57. J Chem Inf Comput Sci. 2004 Nov-Dec;44(6):2216-24 [PMID: 15554692]
  58. Chaos Solitons Fractals. 2020 Oct;139:110055 [PMID: 32834608]
  59. F1000Res. 2015 Oct 20;4:1091 [PMID: 26834994]
  60. Patterns (N Y). 2020 Dec 11;1(9):100123 [PMID: 32959032]
  61. Mach Learn. 2021;110(1):1-14 [PMID: 33318723]
  62. Int J Environ Res Public Health. 2020 Jun 12;17(12): [PMID: 32545581]
  63. JAMA Ophthalmol. 2019 Sep 01;137(9):987-993 [PMID: 31194246]
  64. Cell. 2018 Feb 22;172(5):1122-1131.e9 [PMID: 29474911]
  65. Chaos Solitons Fractals. 2020 Nov;140:110071 [PMID: 32834627]
  66. IEEE Internet Things J. 2020 Aug 03;8(12):9603-9610 [PMID: 36811011]
  67. IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1798-828 [PMID: 23787338]
  68. Sci Bull (Beijing). 2020 Jun 15;65(11):876-878 [PMID: 32296594]
  69. Lancet Rheumatol. 2020 Aug;2(8):e465-e473 [PMID: 32835256]
  70. Chaos Solitons Fractals. 2020 Oct;139:110056 [PMID: 32834609]
  71. Comput Struct Biotechnol J. 2019 Jan 26;17:186-194 [PMID: 30809323]
  72. Eur Radiol. 2020 Nov;30(11):6221-6227 [PMID: 32462445]
  73. Lancet Infect Dis. 2020 May;20(5):534 [PMID: 32087115]
  74. Appl Soft Comput. 2020 Dec;97:106779 [PMID: 33052197]
  75. Nature. 2020 Mar;579(7798):265-269 [PMID: 32015508]

Word Cloud

Created with Highcharts 10.0.0COVID-19MLarticledatamachinelearningalgorithmsmedicalcertainapproachesissuesExaminingintelligentpandemicpurposeseeapplicationsusedinquirypurposesavailabletraditionalmethodsinternationalepidemicpredictionresearchersauthoritiesgivenattentionsimplestatisticalepidemiologicalmethodologiesinadequacyabsencetestingdiagnosingidentifyingsolutiononekeychallengespreventingspreadstatistical-basedimprovementsstrengthenedanswerchallengeresultingpartialresolutionleveladvocatedwiderangeintelligence-basedframeworksequipmentcopeindustryapplicationinventivestructurehandlingrelevantoutbreakdifficultiesinvestigatedmajorgoal1impacttypenaturewellobstaclesprocessing2Bettergraspimportancelike3developmentimprovedtypesprognosis4effectivenessinfluencevariousstrategies5targetpotentialdiagnosisordermotivateacademicsinnovateexpandknowledgeresearchadditionalCOVID-19-affectedindustriesReviewMachineLearningAlgorithmsCovid-19CaseAnalysistaskssystemmathematicalmodel

Similar Articles

Cited By