A Linear Superposition Model of Envelope and Frequency Following Responses May Help Identify Generators Based on Latency.

Tobias Teichert, G Nike Gnanateja, Srivatsun Sadagopan, Bharath Chandrasekaran
Author Information
  1. Tobias Teichert: Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA. ORCID
  2. G Nike Gnanateja: Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, PA, USA. ORCID
  3. Srivatsun Sadagopan: Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA. ORCID
  4. Bharath Chandrasekaran: Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, PA, USA. ORCID

Abstract

Envelope and frequency-following responses (FFR and FFR) are scalp-recorded electrophysiological potentials that closely follow the periodicity of complex sounds such as speech. These signals have been established as important biomarkers in speech and learning disorders. However, despite important advances, it has remained challenging to map altered FFR and FFR to altered processing in specific brain regions. Here we explore the utility of a deconvolution approach based on the assumption that FFR and FFR reflect the linear superposition of responses that are triggered by the glottal pulse in each cycle of the fundamental frequency (F0 responses). We tested the deconvolution method by applying it to FFR and FFR of rhesus monkeys to human speech and click trains with time-varying pitch patterns. Our analyses show that F0 responses could be measured with high signal-to-noise ratio and featured several spectro-temporally and topographically distinct components that likely reflect the activation of brainstem (<5 ms; 200-1000 Hz), midbrain (5-15 ms; 100-250 Hz), and cortex (15-35 ms; ~90 Hz). In contrast, F0 responses contained only one spectro-temporal component that likely reflected activity in the midbrain. In summary, our results support the notion that the latency of F0 components map meaningfully onto successive processing stages. This opens the possibility that pathologically altered FFR or FFR may be linked to altered F0 or F0 and from there to specific processing stages and ultimately spatially targeted interventions.

Keywords

References

  1. Electroencephalogr Clin Neurophysiol. 1975 Apr;38(4):379-86 [PMID: 46818]
  2. Dev Sci. 2009 Jul;12(4):557-67 [PMID: 19635083]
  3. J Neurosci. 2013 Jun 19;33(25):10312-23 [PMID: 23785145]
  4. Neuroreport. 2012 Jan 4;23(1):6-9 [PMID: 22113211]
  5. Neuroimage. 2014 Jul 1;94:203-215 [PMID: 24632091]
  6. Neuron. 2009 Nov 12;64(3):311-9 [PMID: 19914180]
  7. eNeuro. 2018 Feb 9;5(1): [PMID: 29435487]
  8. Hear Res. 2008 Nov;245(1-2):35-47 [PMID: 18765275]
  9. J Acoust Soc Am. 2003 Jul;114(1):307-21 [PMID: 12880043]
  10. J Acoust Soc Am. 2014 Jan;135(1):283-6 [PMID: 24437768]
  11. Electroencephalogr Clin Neurophysiol. 1992 Mar-Apr;84(2):196-200 [PMID: 1372236]
  12. J Neurophysiol. 2013 Jan;109(2):557-69 [PMID: 23100140]
  13. Proc Natl Acad Sci U S A. 2007 Sep 18;104(38):15111-6 [PMID: 17848520]
  14. Nat Commun. 2016 Mar 24;7:11070 [PMID: 27009409]
  15. Clin Neurophysiol. 2000 May;111(5):833-6 [PMID: 10802454]
  16. Front Comput Neurosci. 2015 Jul 14;9:87 [PMID: 26236226]
  17. Nat Commun. 2019 Nov 6;10(1):5036 [PMID: 31695046]
  18. J Acoust Soc Am. 1998 Nov;104(5):2935-55 [PMID: 9821339]
  19. J Acoust Soc Am. 2003 Feb;113(2):936-50 [PMID: 12597187]
  20. J Neurosci. 2005 Oct 26;25(43):9850-7 [PMID: 16251432]
  21. Brain Topogr. 2014 Jul;27(4):539-52 [PMID: 24150692]
  22. eNeuro. 2021 Dec 23;8(6): [PMID: 34799409]
  23. J Neurosci. 2012 Nov 7;32(45):15747-58 [PMID: 23136414]
  24. J Neurophysiol. 2009 Oct;102(4):2358-74 [PMID: 19675285]
  25. J Neurosci. 2013 Feb 20;33(8):3500-4 [PMID: 23426677]
  26. J Neurophysiol. 2017 Mar 1;117(3):1407-1422 [PMID: 28077662]
  27. PLoS One. 2014 Feb 26;9(2):e89914 [PMID: 24587119]
  28. Hear Res. 1987;25(2-3):91-114 [PMID: 3558136]
  29. J Comp Neurol. 2005 Oct 24;491(3):270-89 [PMID: 16134138]
  30. Hear Res. 2016 Jun;336:29-43 [PMID: 27085798]
  31. Clin Neurophysiol. 2001 May;112(5):758-67 [PMID: 11336890]
  32. Sci Rep. 2021 Mar 23;11(1):6660 [PMID: 33758251]
  33. Ear Hear. 2010 Jun;31(3):302-24 [PMID: 20084007]
  34. Cereb Cortex. 2009 Nov;19(11):2699-707 [PMID: 19293398]
  35. Elife. 2021 Feb 17;10: [PMID: 33594974]
  36. J Neurosci. 2010 Apr 7;30(14):4922-6 [PMID: 20371812]
  37. J Neurosci. 2013 Sep 18;33(38):15120-5 [PMID: 24048842]
  38. Hear Res. 2019 Oct;382:107779 [PMID: 31505395]
  39. Neuroscience. 2018 Aug 1;384:64-75 [PMID: 29802881]
  40. Psychophysiology. 2010 Mar 1;47(2):236-46 [PMID: 19824950]
  41. Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15425-30 [PMID: 23959894]
  42. Electroencephalogr Clin Neurophysiol. 1975 Nov;39(5):465-72 [PMID: 52439]
  43. Sci Rep. 2017 Nov 30;7(1):16687 [PMID: 29192170]
  44. Hear Res. 2015 May;323:68-80 [PMID: 25660195]
  45. Neuroimage. 2021 May 1;231:117866 [PMID: 33592244]
  46. Clin Neurophysiol. 2008 Nov;119(11):2598-607 [PMID: 18818122]
  47. J Neurosci Methods. 2020 Dec 1;346:108906 [PMID: 32822693]
  48. J Neurophysiol. 2016 Nov 1;116(5):2125-2139 [PMID: 27512021]
  49. J Autism Dev Disord. 2021 Sep;51(9):3291-3310 [PMID: 33216279]

Grants

  1. R01 DC013315/NIDCD NIH HHS

Word Cloud

Created with Highcharts 10.0.0FFRresponsesF0alteredspeechprocessingdeconvolutionmsHzEnvelopeimportantmapspecificreflectfrequencycomponentslikelymidbrainstagesfollowingfrequency-followingscalp-recordedelectrophysiologicalpotentialscloselyfollowperiodicitycomplexsoundssignalsestablishedbiomarkerslearningdisordersHoweverdespiteadvancesremainedchallengingbrainregionsexploreutilityapproachbasedassumptionlinearsuperpositiontriggeredglottalpulsecyclefundamentaltestedmethodapplyingrhesusmonkeyshumanclicktrainstime-varyingpitchpatternsanalysesshowmeasuredhighsignal-to-noiseratiofeaturedseveralspectro-temporallytopographicallydistinctactivationbrainstem<5200-10005-15100-250cortex15-35~90contrastcontainedonespectro-temporalcomponentreflectedactivitysummaryresultssupportnotionlatencymeaningfullyontosuccessiveopenspossibilitypathologicallymaylinkedultimatelyspatiallytargetedinterventionsLinearSuperpositionModelFrequencyFollowingResponsesMayHelpIdentifyGeneratorsBasedLatencyEEGenvelopemacaquemonkeytemporalfinestructure

Similar Articles

Cited By