Transcriptome analysis of (Agaricomycetes) response to infection.

Tiantian Wang, Xiaobin Li, Chunlan Zhang, Jize Xu
Author Information
  1. Tiantian Wang: Agricultural College, Yanbian University, Yanji, China.
  2. Xiaobin Li: Agricultural College, Yanbian University, Yanji, China.
  3. Chunlan Zhang: College of Landscape Architecture, Changchun University, Changchun, China.
  4. Jize Xu: Agricultural College, Yanbian University, Yanji, China.

Abstract

Green mold caused by spp. has become one of the most serious diseases which threatening the production of . To understand the possible resistance mechanism of the response to infection, we examined the transcript accumulation at 0, 12, and 24 h after inoculation. The gene expression analysis was conducted on the interaction between and using RNA-seq and digital gene expression (DGE) profiling methods. Transcriptome sequencing indicated that there were 162 differentially expressed genes (DEGs) at three infection time points, containing 15 up-regulated DEGs and 147 down-regulated DEGs. Resistance-related genes thaumatin-like proteins (TLPs) (PR-5s), phenylalanine ammonia-lyase, and Beta-1,3-glucan binding protein were significantly up-regulated. At the three time points of infection, the heat shock proteins (HSPs) genes of were down-regulated. The down-regulation of HSPs genes led to the inhibition of HSP function, which may compromise the HSP-mediated defense signaling transduction pathway, leading to susceptibility. Pathway enrichment analyses showed that the main enriched pathways by after infection were sphingolipid metabolism, ether lipid metabolism, and valine, leucine and isoleucine degradation pathway. Overall, the results described here improve fundamental knowledge of molecular responses to defense and contribute to the design of strategies against spp.

Keywords

References

  1. Molecules. 2019 May 29;24(11): [PMID: 31146329]
  2. Front Plant Sci. 2018 Oct 23;9:1530 [PMID: 30405667]
  3. Fish Shellfish Immunol. 2017 Sep;68:54-64 [PMID: 28684323]
  4. Metabolomics. 2010 Sep;6(3):451-465 [PMID: 20676379]
  5. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  6. J Environ Sci Health B. 2021;56(1):54-63 [PMID: 33156729]
  7. Front Plant Sci. 2017 Jan 20;8:22 [PMID: 28163714]
  8. Carcinogenesis. 2011 Dec;32(12):1890-6 [PMID: 21983128]
  9. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  10. Mycobiology. 2020 Jul 24;48(5):427-430 [PMID: 33177923]
  11. Int J Mol Sci. 2019 Dec 03;20(23): [PMID: 31816858]
  12. J Plant Res. 2017 May;130(3):571-585 [PMID: 28303405]
  13. Mol Immunol. 2017 Dec;92:1-11 [PMID: 29028485]
  14. Life (Basel). 2021 Aug 23;11(8): [PMID: 34440607]
  15. Nat Prod Rep. 2018 Sep 19;35(9):921-954 [PMID: 29863195]
  16. Curr Pharm Biotechnol. 2009 Dec;10(8):717-42 [PMID: 19939212]
  17. Annu Rev Phytopathol. 2006;44:135-62 [PMID: 16602946]
  18. Dev Comp Immunol. 2016 Aug;61:70-9 [PMID: 26995767]
  19. Prog Lipid Res. 2006 Nov;45(6):447-65 [PMID: 16730802]
  20. Plant Signal Behav. 2008 Oct;3(10):856-7 [PMID: 19704521]
  21. Phytochemistry. 2006 Sep;67(18):1985-2001 [PMID: 16905165]
  22. Biochimie. 2003 Jan-Feb;85(1-2):123-31 [PMID: 12765782]
  23. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  24. Int J Med Mushrooms. 2015;17(3):277-86 [PMID: 25954911]
  25. Trends Plant Sci. 2004 May;9(5):244-52 [PMID: 15130550]
  26. Microorganisms. 2021 Mar 12;9(3): [PMID: 33809140]
  27. Pest Manag Sci. 2022 Jul;78(7):3117-3127 [PMID: 35442542]
  28. Fungal Genet Biol. 2013 Jun;55:67-76 [PMID: 23665188]
  29. Sci Bull (Beijing). 2020 Sep 15;65(17):1425-1427 [PMID: 36747397]
  30. BMC Genomics. 2021 Jul 9;22(1):523 [PMID: 34243707]
  31. Curr Genet. 2018 Oct;64(5):1021-1028 [PMID: 29556757]
  32. Mol Plant. 2015 Jan;8(1):17-27 [PMID: 25578269]
  33. Mol Genet Genomics. 2019 Oct;294(5):1137-1157 [PMID: 31030277]
  34. Gene. 2013 Jan 10;512(2):331-6 [PMID: 23069850]
  35. Mol Plant Pathol. 2002 Sep 1;3(5):371-90 [PMID: 20569344]
  36. Front Plant Sci. 2022 Jun 23;13:864927 [PMID: 35845707]
  37. BMC Plant Biol. 2022 Jun 14;22(1):291 [PMID: 35701735]
  38. Curr Opin Plant Biol. 2013 Jun;16(3):350-7 [PMID: 23499054]
  39. Plant Cell. 2014 Aug;26(8):3449-67 [PMID: 25149397]
  40. Plant Mol Biol. 2015 Feb;87(3):273-86 [PMID: 25515696]

Word Cloud

Created with Highcharts 10.0.0infectiongenesDEGspathwaymoldsppresponsegeneexpressionanalysisRNA-seqTranscriptomethreetimepointsup-regulateddown-regulatedproteinsHSPsdefensemetabolismGreencausedbecomeoneseriousdiseasesthreateningproductionunderstandpossibleresistancemechanismexaminedtranscriptaccumulation01224hinoculationconductedinteractionusingdigitalDGEprofilingmethodssequencingindicated162differentiallyexpressedcontaining15147Resistance-relatedthaumatin-likeTLPsPR-5sphenylalanineammonia-lyaseBeta-13-glucanbindingproteinsignificantlyheatshockdown-regulationledinhibitionHSPfunctionmaycompromiseHSP-mediatedsignalingtransductionleadingsusceptibilityPathwayenrichmentanalysesshowedmainenrichedpathwayssphingolipidetherlipidvalineleucineisoleucinedegradationOverallresultsdescribedimprovefundamentalknowledgemolecularresponsescontributedesignstrategiesAgaricomycetesGanodermalingzhiTrichodermahengshanicumgreen

Similar Articles

Cited By (3)