The C-Terminal Acid Phosphatase Module of the RNase HI Enzyme RnhC Controls Rifampin Sensitivity and Light-Dependent Colony Pigmentation of Mycobacterium smegmatis.

Pierre Dupuy, Michael S Glickman
Author Information
  1. Pierre Dupuy: Immunology Program, Sloan Kettering Institute, New York, New York, USA.
  2. Michael S Glickman: Immunology Program, Sloan Kettering Institute, New York, New York, USA. ORCID

Abstract

RNase H enzymes participate in various processes that require processing of RNA-DNA hybrids, including DNA replication, transcription, and ribonucleotide excision from DNA. Mycobacteria encode multiple RNase H enzymes, and prior data indicate that RNase HI activity is essential for mycobacterial viability. However, the additional roles of mycobacterial RNase Hs are unknown, including whether RNase HII (RnhB and RnhD) excises chromosomal ribonucleotides misincorporated during DNA replication and whether individual RNase HI enzymes (RnhA and RnhC) mediate additional phenotypes. We find that loss of RNase HII activity in Mycobacterium smegmatis (through combined deletion of /) or individual RNase HI enzymes does not affect growth, hydroxyurea sensitivity, or mutagenesis, whereas overexpression (OE) of either RNase HII severely compromises bacterial viability. We also show that deletion of , which encodes a protein with an N-terminal RNase HI domain and a C-terminal acid phosphatase domain, confers sensitivity to rifampin and oxidative stress as well as loss of light-induced carotenoid pigmentation. These phenotypes are due to loss of the activity of the C-terminal acid phosphatase domain rather than the RNase HI activity, suggesting that the acid phosphatase activity may confer rifampin resistance through the antioxidant properties of carotenoid pigment production. Mycobacteria encode multiple RNase H enzymes, with RNase HI being essential for viability. Here, we examine additional functions of RNase H enzymes in mycobacteria. We find that RNase HII is not involved in mutagenesis but is highly toxic when overexpressed. The RNase HI enzyme RnhC is required for tolerance to rifampin, but this role is surprisingly independent of its RNase H activity and is instead mediated by an autonomous C-terminal acid phosphatase domain. This study provides new insights into the functions of the multiple RNase H enzymes of mycobacteria.

Keywords

References

  1. Front Microbiol. 2020 Aug 19;11:2008 [PMID: 32973726]
  2. J Bacteriol. 2018 Jan 24;200(4): [PMID: 29084857]
  3. Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):19517-19527 [PMID: 32727901]
  4. Cell. 2019 Oct 17;179(3):604-618 [PMID: 31607512]
  5. PLoS One. 2015 May 12;10(5):e0126260 [PMID: 25965344]
  6. Methods Enzymol. 1980;67:264-70 [PMID: 7366433]
  7. DNA Repair (Amst). 2017 Aug;56:26-32 [PMID: 28629774]
  8. J Bacteriol. 1999 Apr;181(7):2118-23 [PMID: 10094689]
  9. J Bacteriol. 2010 Jun;192(11):2878-86 [PMID: 20363939]
  10. Microb Cell Fact. 2017 Jan 30;16(1):15 [PMID: 28137297]
  11. J Biosci Bioeng. 1999;88(1):12-9 [PMID: 16232566]
  12. PLoS One. 2015 Jan 20;10(1):e0115521 [PMID: 25603150]
  13. Nucleic Acids Res. 2003 Jul 15;31(14):4129-37 [PMID: 12853630]
  14. Antimicrob Agents Chemother. 2022 Oct 18;66(10):e0209121 [PMID: 36154174]
  15. FEBS J. 2009 Mar;276(6):1482-93 [PMID: 19228197]
  16. J Bacteriol. 2007 Mar;189(6):2210-8 [PMID: 17209023]
  17. J Bacteriol. 2007 Dec;189(23):8575-83 [PMID: 17905985]
  18. DNA Repair (Amst). 2019 Dec;84:102672 [PMID: 31371183]
  19. Sci Rep. 2020 May 21;10(1):8402 [PMID: 32439911]
  20. Biochem J. 1956 Feb;62(2):269-75 [PMID: 13293182]
  21. J Bacteriol. 2008 Dec;190(23):7859-63 [PMID: 18805974]
  22. Nat Commun. 2022 Aug 2;13(1):4493 [PMID: 35918328]
  23. Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):12942-7 [PMID: 23882084]
  24. Cold Spring Harb Perspect Biol. 2013 Feb 01;5(2): [PMID: 23378587]
  25. Tubercle. 1970 Sep;51(3):305-12 [PMID: 5495651]
  26. Microbiologyopen. 2015 Dec;4(6):896-916 [PMID: 26434659]
  27. Gene. 2011 Jan 1;470(1-2):31-6 [PMID: 20851171]
  28. Mol Cell. 2012 Apr 27;46(2):115-24 [PMID: 22541554]
  29. Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4949-54 [PMID: 20194773]
  30. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1619-22 [PMID: 9050827]
  31. Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):11733-11738 [PMID: 29078353]
  32. DNA Repair (Amst). 2014 Jul;19:27-37 [PMID: 24794402]
  33. Nucleic Acids Res. 2017 Jan 9;45(1):1-14 [PMID: 27899559]
  34. J Biol Chem. 1978 Feb 10;253(3):758-64 [PMID: 340457]
  35. J Bacteriol. 2012 Aug;194(15):4003-14 [PMID: 22636779]
  36. FEBS J. 2009 Mar;276(6):1494-505 [PMID: 19228196]
  37. FEBS J. 2010 Nov;277(22):4662-73 [PMID: 20929460]
  38. Science. 2011 Jun 24;332(6037):1561-4 [PMID: 21700875]
  39. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2294-8 [PMID: 781674]
  40. J Gen Microbiol. 1979 Dec;115(2):317-23 [PMID: 528975]
  41. Mol Cell. 1997 Dec;1(1):89-97 [PMID: 9659906]
  42. J Bacteriol. 2015 Aug 1;197(15):2489-98 [PMID: 25986906]
  43. Mol Cell Biochem. 1994 Nov 9;140(1):1-22 [PMID: 7877593]
  44. Nucleic Acids Res. 2014;42(17):11056-70 [PMID: 25200080]
  45. J Biol Chem. 1978 Feb 10;253(3):770-4 [PMID: 340459]
  46. Gene. 1995 Nov 7;165(1):71-5 [PMID: 7489919]
  47. Mol Microbiol. 2016 Oct;102(1):168-82 [PMID: 27349932]
  48. Science. 2012 Apr 20;336(6079):315-9 [PMID: 22517853]

Grants

  1. P30 CA008748/NCI NIH HHS
  2. R01 AI064693/NIAID NIH HHS

MeSH Term

Mycobacterium smegmatis
Rifampin
Acid Phosphatase
Amino Acid Sequence
Substrate Specificity
Ribonuclease H
DNA
Pigmentation

Chemicals

ribonuclease HI
Rifampin
Acid Phosphatase
Ribonuclease H
DNA

Word Cloud

Created with Highcharts 10.0.0RNaseHIenzymesactivityHHIIdomainacidphosphataseDNAmultipleviabilityadditionalRnhClossC-terminalrifampinincludingreplicationMycobacteriaencodeessentialmycobacterialwhetherindividualphenotypesfindMycobacteriumsmegmatisdeletionsensitivitymutagenesiscarotenoidfunctionsmycobacteriaparticipatevariousprocessesrequireprocessingRNA-DNAhybridstranscriptionribonucleotideexcisionpriordataindicateHoweverrolesHsunknownRnhBRnhDexciseschromosomalribonucleotidesmisincorporatedRnhAmediatecombined/affectgrowthhydroxyureawhereasoverexpressionOEeitherseverelycompromisesbacterialalsoshowencodesproteinN-terminalconfersoxidativestresswelllight-inducedpigmentationduerathersuggestingmayconferresistanceantioxidantpropertiespigmentproductionexamineinvolvedhighlytoxicoverexpressedenzymerequiredtolerancerolesurprisinglyindependentinsteadmediatedautonomousstudyprovidesnewinsightsC-TerminalAcidPhosphataseModuleEnzymeControlsRifampinSensitivityLight-DependentColonyPigmentationantimicrobialmycobacterium

Similar Articles

Cited By