Categorizing update mechanisms for graph-structured metapopulations.

Sedigheh Yagoobi, Nikhil Sharma, Arne Traulsen
Author Information
  1. Sedigheh Yagoobi: Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemann Strasse 2, Plön 24306, Germany. ORCID
  2. Nikhil Sharma: Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemann Strasse 2, Plön 24306, Germany. ORCID
  3. Arne Traulsen: Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemann Strasse 2, Plön 24306, Germany. ORCID

Abstract

The structure of a population strongly influences its evolutionary dynamics. In various settings ranging from biology to social systems, individuals tend to interact more often with those present in their proximity and rarely with those far away. A common approach to model the structure of a population is evolutionary graph theory. In this framework, each graph node is occupied by a reproducing individual. The links connect these individuals to their neighbours. The offspring can be placed on neighbouring nodes, replacing the neighbours-or the progeny of its neighbours can replace a node during the course of ongoing evolutionary dynamics. Extending this theory by replacing single individuals with subpopulations at nodes yields a graph-structured metapopulation. The dynamics between the different local subpopulations is set by an update mechanism. There are many such update mechanisms. Here, we classify update mechanisms for structured metapopulations, which allows to find commonalities between past work and illustrate directions for further research and current gaps of investigation.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14966-9 [PMID: 14657359]
  2. J Math Biol. 2019 Mar;78(4):1147-1210 [PMID: 30430219]
  3. Phys Rev E. 2019 Jul;100(1-1):012408 [PMID: 31499887]
  4. Phys Rev Lett. 2022 May 27;128(21):218301 [PMID: 35687454]
  5. Elife. 2017 Dec 21;6: [PMID: 29266000]
  6. J Theor Biol. 2003 Aug 21;223(4):433-50 [PMID: 12875822]
  7. Genetics. 2020 Sep;216(1):191-203 [PMID: 32661138]
  8. R Soc Open Sci. 2015 Apr 29;2(4):140465 [PMID: 26064637]
  9. Genetics. 1964 Apr;49(4):561-76 [PMID: 17248204]
  10. Proc Natl Acad Sci U S A. 2022 Sep 13;119(37):e2205424119 [PMID: 36067304]
  11. Genet Res. 1970 Apr;15(2):221-5 [PMID: 5480754]
  12. PLoS Comput Biol. 2015 Nov 06;11(11):e1004437 [PMID: 26544962]
  13. J Evol Biol. 2023 Feb;36(2):444-460 [PMID: 36514852]
  14. Nature. 2006 May 25;441(7092):502-5 [PMID: 16724065]
  15. PLoS One. 2017 Jul 10;12(7):e0180549 [PMID: 28700698]
  16. Evolution. 1981 May;35(3):477-488 [PMID: 28563585]
  17. Proc Biol Sci. 1999 Dec 7;266(1436):2389-97 [PMID: 10643083]
  18. Nature. 2017 Apr 13;544(7649):227-230 [PMID: 28355181]
  19. Nat Commun. 2024 May 31;15(1):4666 [PMID: 38821923]
  20. J R Soc Interface. 2008 Mar 6;5(20):259-71 [PMID: 17971320]
  21. Genetics. 1931 Mar;16(2):97-159 [PMID: 17246615]
  22. Genetics. 2003 Jun;164(2):767-79 [PMID: 12807795]
  23. Nature. 2005 Jan 20;433(7023):312-6 [PMID: 15662424]
  24. Phys Rev E. 2019 Apr;99(4-1):042304 [PMID: 31108590]
  25. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 1):041121 [PMID: 18517592]
  26. J Theor Biol. 1997 Jan 7;184(1):65-81 [PMID: 9039401]
  27. PLoS One. 2013;8(1):e54639 [PMID: 23382931]
  28. J Theor Biol. 2009 May 21;258(2):323-34 [PMID: 19490863]
  29. J Theor Biol. 2014 Oct 7;358:149-65 [PMID: 24882790]
  30. Sci Rep. 2021 Sep 9;11(1):17979 [PMID: 34504152]
  31. J R Soc Interface. 2014 Oct 6;11(99): [PMID: 25142521]
  32. J R Soc Interface. 2008 Nov 6;5(28):1279-89 [PMID: 18664425]
  33. Phys Rev Lett. 2021 Nov 19;127(21):218102 [PMID: 34860074]
  34. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jul;80(1 Pt 1):011909 [PMID: 19658731]
  35. PLoS Comput Biol. 2020 Jan 17;16(1):e1007494 [PMID: 31951609]
  36. J Theor Biol. 2006 Nov 7;243(1):86-97 [PMID: 16860343]
  37. J Math Biol. 2014 Jan;68(1-2):109-43 [PMID: 23179131]
  38. Sci Rep. 2019 May 6;9(1):6946 [PMID: 31061385]
  39. Nat Rev Cancer. 2014 Jul;14(7):468-80 [PMID: 24920463]
  40. PLoS Comput Biol. 2018 Nov 12;14(11):e1006559 [PMID: 30419017]
  41. J Theor Biol. 2018 Aug 14;451:10-18 [PMID: 29727631]
  42. Phys Rev Lett. 2006 May 12;96(18):188104 [PMID: 16712402]
  43. PLoS Comput Biol. 2020 Jan 17;16(1):e1007529 [PMID: 31951612]
  44. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042707 [PMID: 26565272]
  45. J Theor Biol. 2007 Dec 21;249(4):766-84 [PMID: 17945261]
  46. J Theor Biol. 1998 Sep 7;194(1):101-24 [PMID: 9778428]
  47. J Math Biol. 2021 Feb 3;82(3):14 [PMID: 33534054]
  48. Biosystems. 2010 Feb;99(2):109-25 [PMID: 19837129]

MeSH Term

Humans
Ecosystem
Population Dynamics
Models, Biological
Biological Evolution

Word Cloud

Created with Highcharts 10.0.0updateevolutionarydynamicsindividualsgraphtheorygraph-structuredmetapopulationmechanismsstructurepopulationnodeneighbourscannodesreplacingsubpopulationsmechanismmetapopulationsstronglyinfluencesvarioussettingsrangingbiologysocialsystemstendinteractoftenpresentproximityrarelyfarawaycommonapproachmodelframeworkoccupiedreproducingindividuallinksconnectoffspringplacedneighbouringneighbours-orprogenyreplacecourseongoingExtendingsingleyieldsdifferentlocalsetmanyclassifystructuredallowsfindcommonalitiespastworkillustratedirectionsresearchcurrentgapsinvestigationCategorizingnetwork-structured

Similar Articles

Cited By