Transport and Utilization of Glycogen Breakdown Products by spp. from the Human Vaginal Microbiome.

Pashupati Bhandari, Janet E Hill
Author Information
  1. Pashupati Bhandari: Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada. ORCID
  2. Janet E Hill: Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada. ORCID

Abstract

Multiple species frequently cooccur in vaginal microbiomes, and several factors, including competition for nutrients such as glycogen could determine their population structure. Although spp. can hydrolyze glycogen to produce glucose, maltose, maltotriose, and maltotetraose, how these sugars are transported and utilized for growth is unknown. We determined the distribution of genes encoding transporter proteins associated with the uptake of glucose, maltose, and malto-oligosaccharides and maltodextrins among species. A total of five different ABC transporters were identified in spp. of which MusEFGKI and MalXFGK were conserved across all 15 isolates. RafEFGK and TMSP (trehalose, maltose, sucrose, and palatinose) operons were specific to while the MalEFG transporter was identified in only. Although no glucose specific sugar-symporters were identified, putative "glucose/galactose porters" and components of a phosphotransferase system were identified. In laboratory experiments, all isolates grew more in the presence of glucose, maltose, maltotriose, and maltotetraose compared to unsupplemented media. In addition, most isolates (10/15) showed significantly more growth on maltotetraose compared to glucose (Kruskal Wallis,  < 0.05) suggesting their preference for longer chain malto-oligosaccharides. Our findings show that although putative MusEFGKI and MalXFGK transporters are found in all spp., some species-specific transporters are also present. Observed distribution of genes encoding transporter systems was consistent with laboratory observations that spp. grow better on longer chain malto-oligosaccharides. Increased abundance of spp. is a diagnostic characteristic of bacterial vaginosis, an imbalance in the human vaginal microbiome associated with troubling symptoms and negative reproductive health outcomes, including increased transmission of sexually transmitted infections and preterm birth. Competition for nutrients is likely an important factor in causing dramatic shifts in the vaginal microbial community. produces enzymes to digest glycogen, an important nutrient source for vaginal bacteria, but little is known about the mechanisms in for uptake of the products of this digestion, or whether use some or all of the products. Our results indicate that may have evolved to preferentially use a subset of the glycogen breakdown products, which would help them reduce direct competition with some other bacteria in the vagina.

Keywords

References

  1. J Bacteriol. 2005 Apr;187(8):2715-26 [PMID: 15805518]
  2. Nucleic Acids Res. 2021 Jan 8;49(D1):D461-D467 [PMID: 33170213]
  3. Microb Ecol. 2021 Nov;82(4):1048-1060 [PMID: 33219399]
  4. Nat Rev Mol Cell Biol. 2009 Mar;10(3):218-27 [PMID: 19234479]
  5. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4680-7 [PMID: 20534435]
  6. BMC Genomics. 2008 Feb 08;9:75 [PMID: 18261238]
  7. Anal Biochem. 2007 Jul 1;366(1):102-4 [PMID: 17434438]
  8. Infect Immun. 2019 Nov 18;87(12): [PMID: 31527125]
  9. PLoS One. 2014 Aug 22;9(8):e105998 [PMID: 25148517]
  10. Reprod Sci. 2015 Nov;22(11):1393-8 [PMID: 25878210]
  11. Front Cell Infect Microbiol. 2019 Oct 31;9:374 [PMID: 31737577]
  12. PLoS One. 2016 Jan 11;11(1):e0146510 [PMID: 26751374]
  13. Physiology (Bethesda). 2007 Apr;22:122-30 [PMID: 17420303]
  14. Microbiol Mol Biol Rev. 2006 Dec;70(4):939-1031 [PMID: 17158705]
  15. Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14 [PMID: 24293654]
  16. Nucleic Acids Res. 2017 Jan 4;45(D1):D320-D324 [PMID: 27899676]
  17. J Bacteriol. 2013 Jun;195(11):2573-84 [PMID: 23543710]
  18. Infect Immun. 2011 Oct;79(10):4193-200 [PMID: 21825065]
  19. FEMS Microbiol Rev. 1998 Apr;22(1):1-20 [PMID: 9640644]
  20. Fertil Steril. 1962 May-Jun;13:270-80 [PMID: 13918364]
  21. J Infect Dis. 2014 Oct 1;210(7):1019-28 [PMID: 24737800]
  22. Enzyme Res. 2012;2012:921362 [PMID: 22991654]
  23. Mol Microbiol. 2010 Jul 1;77(1):183-99 [PMID: 20497336]
  24. Genome Res. 2004 Aug;14(8):1669-75 [PMID: 15289485]
  25. J Bacteriol. 2021 Aug 9;203(17):e0021321 [PMID: 34124938]
  26. Microbiome. 2019 Mar 29;7(1):49 [PMID: 30925932]
  27. Mol Biol Evol. 2021 Sep 27;38(10):4647-4654 [PMID: 34320186]
  28. J Bacteriol. 2010 Oct;192(20):5312-8 [PMID: 20693325]
  29. J Bacteriol. 2023 Feb 22;205(2):e0039322 [PMID: 36744900]
  30. Nat Biotechnol. 2019 May;37(5):540-546 [PMID: 30936562]
  31. EMBO Rep. 2002 Oct;3(10):938-43 [PMID: 12370206]
  32. J Bacteriol. 2008 Jan;190(1):168-78 [PMID: 17965163]
  33. Pflugers Arch. 2020 Sep;472(9):1129-1153 [PMID: 32372286]
  34. Int J Syst Evol Microbiol. 2019 Mar;69(3):679-687 [PMID: 30648938]
  35. PLoS One. 2018 Jul 12;13(7):e0200625 [PMID: 30001418]
  36. Database (Oxford). 2019 Jan 1;2019: [PMID: 30820575]
  37. Nucleic Acids Res. 2018 Jan 4;46(D1):D516-D521 [PMID: 30053267]

Word Cloud

Created with Highcharts 10.0.0sppvaginalglycogenglucosemaltosetransporteridentifiedmaltotetraosemalto-oligosaccharidestransportersisolatesproductsspeciesincludingcompetitionnutrientsAlthoughmaltotriosegrowthdistributiongenesencodingassociateduptakeABCMusEFGKIMalXFGKspecificputativelaboratorycomparedlongerchainmicrobiomeimportantbacteriauseMultiplefrequentlycooccurmicrobiomesseveralfactorsdeterminepopulationstructurecanhydrolyzeproducesugarstransportedutilizedunknowndeterminedproteinsmaltodextrinsamongtotalfivedifferentconservedacross15RafEFGKTMSPtrehalosesucrosepalatinoseoperonsMalEFGsugar-symporters"glucose/galactoseporters"componentsphosphotransferasesystemexperimentsgrewpresenceunsupplementedmediaaddition10/15showedsignificantlyKruskalWallis< 005suggestingpreferencefindingsshowalthoughfoundspecies-specificalsopresentObservedsystemsconsistentobservationsgrowbetterIncreasedabundancediagnosticcharacteristicbacterialvaginosisimbalancehumantroublingsymptomsnegativereproductivehealthoutcomesincreasedtransmissionsexuallytransmittedinfectionspretermbirthCompetitionlikelyfactorcausingdramaticshiftsmicrobialcommunityproducesenzymesdigestnutrientsourcelittleknownmechanismsdigestionwhetherresultsindicatemayevolvedpreferentiallysubsetbreakdownhelpreducedirectvaginaTransportUtilizationGlycogenBreakdownProductsHumanVaginalMicrobiomeGardnerellacarbohydrate

Similar Articles

Cited By