Brain areas activated during visual learning in the cichlid fish Pseudotropheus zebra.

R Calvo, M H Hofmann, V Schluessel
Author Information
  1. R Calvo: Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115, Bonn, Germany. rcalvo@uni-bonn.de.
  2. M H Hofmann: Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115, Bonn, Germany.
  3. V Schluessel: Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115, Bonn, Germany.

Abstract

The neural correlates of most cognitive functions in fish are unknown. This project aimed to identify brain regions involved in visual learning in the cichlid fish Pseudotropheus zebra. The expression of the protein pS6 was measured in 19 brain areas and compared between groups of individuals subjected to four different behavioral contexts (control, avoidance, trained, and novelty groups). Control group individuals were sacrificed with minimal interactions. Fish in the avoidance group were chased with a net for an hour, after which they were sacrificed. Individuals in the trained group received daily training sessions to associate a visual object with a food reward. They were sacrificed the day they reached learning criterion. Fish in the novelty group were habituated to one set of visual stimuli, then faced a change in stimulus type (novelty stimulus) before they were sacrificed. Fish in the three treatment groups showed the largest activation of pS6 in the inferior lobes and the tectum opticum compared to the control group. The avoidance group showed additional activation in the preoptic area, several telencephalic regions, the torus semicircularis, and the reticular formation. The trained group that received a food reward, showed additional activation of the torus lateralis, a tertiary gustatory center. The only area that showed strong activation in all three treatment groups was the nucleus diffusus situated within the inferior lobe. The inferior lobe receives prominent visual input from the tectum via the nucleus glomerulosus but so far, nothing is known about the functional details of this pathway. Our study showed for the first time that the inferior lobes play an important role in visual learning and object recognition.

Keywords

References

  1. Physiol Behav. 1976 Jun;16(6):783-8 [PMID: 981374]
  2. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2012 Jan;198(1):53-60 [PMID: 21960282]
  3. Anim Cogn. 2014 Sep;17(5):1187-205 [PMID: 24794621]
  4. Front Behav Neurosci. 2022 Feb 16;16:784835 [PMID: 35250500]
  5. Vis Neurosci. 2007 May-Jun;24(3):291-8 [PMID: 17822573]
  6. J Comp Neurol. 2007 Apr 1;501(4):582-607 [PMID: 17278137]
  7. Behav Ecol. 2015 Mar-Apr;26(2):527-532 [PMID: 25825587]
  8. Brain Behav Evol. 2000 Jan;55(1):1-13 [PMID: 10773621]
  9. Genes Brain Behav. 2020 Jul;19(6):e12657 [PMID: 32323443]
  10. BMC Biol. 2019 Mar 8;17(1):22 [PMID: 30849972]
  11. Brain Res Bull. 2005 Sep 15;66(4-6):277-81 [PMID: 16144602]
  12. BMC Evol Biol. 2005 Feb 21;5:17 [PMID: 15723698]
  13. Horm Behav. 2019 Aug;114:104539 [PMID: 31199904]
  14. Dev Neurobiol. 2017 Jan;77(1):26-38 [PMID: 27273844]
  15. J Neurosci. 2021 Oct 20;41(42):8742-8760 [PMID: 34470805]
  16. Front Neural Circuits. 2014 Mar 20;8:24 [PMID: 24688458]
  17. Animals (Basel). 2021 Jul 31;11(8): [PMID: 34438729]
  18. Sci Rep. 2019 Dec 27;9(1):19994 [PMID: 31882605]
  19. Sci Rep. 2018 May 1;8(1):6818 [PMID: 29717159]
  20. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5107-10 [PMID: 10220426]
  21. Zoology (Jena). 2012 Dec;115(6):346-53 [PMID: 23040178]
  22. J Neurosci. 2020 Feb 12;40(7):1549-1559 [PMID: 31911461]
  23. Horm Behav. 2020 Nov;126:104870 [PMID: 33002455]
  24. Brain Behav Evol. 1999 Sep;54(3):127-46 [PMID: 10559551]
  25. Neuroscience. 2021 Aug 21;470:52-69 [PMID: 34280491]
  26. J Comp Neurol. 2002 Jul 15;449(1):43-64 [PMID: 12115692]
  27. Brain Behav Evol. 2001;58(4):185-204 [PMID: 11964496]
  28. J Comp Neurol. 2019 May 15;527(9):1508-1526 [PMID: 30666646]
  29. J Comp Neurol. 2018 Jul 1;526(10):1733-1746 [PMID: 29638003]
  30. J Exp Biol. 2021 Aug 15;224(16): [PMID: 34405880]
  31. Sci Rep. 2022 Mar 31;12(1):3894 [PMID: 35361791]
  32. J Comp Neurol. 2003 Jul 21;462(2):194-212 [PMID: 12794743]
  33. Front Behav Neurosci. 2016 May 13;10:93 [PMID: 27242462]
  34. Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):21176-80 [PMID: 21106763]
  35. J Fish Biol. 2012 Dec;81(7):2151-74 [PMID: 23252732]
  36. Curr Biol. 2004 Sep 7;14(17):1565-8 [PMID: 15341743]
  37. Chem Senses. 2022 Jan 1;47: [PMID: 35580574]
  38. J Comp Neurol. 2022 Apr;530(6):903-922 [PMID: 34614539]
  39. Vis Neurosci. 2003 May-Jun;20(3):335-48 [PMID: 14570255]
  40. Int Rev Cell Mol Biol. 2008;268:1-37 [PMID: 18703402]
  41. Behav Brain Res. 1996 Sep;79(1-2):193-200 [PMID: 8883830]
  42. Mol Neurobiol. 2019 May;56(5):3175-3192 [PMID: 30105671]
  43. J Comp Neurol. 1983 May 10;216(2):115-31 [PMID: 6863598]
  44. J Biol Chem. 1974 Nov 10;249(21):6917-25 [PMID: 4423396]
  45. J Exp Biol. 2013 Oct 1;216(Pt 19):3656-66 [PMID: 23788709]
  46. Brain Behav Evol. 2018;91(1):31-44 [PMID: 29597197]
  47. Neuroscience. 2020 Oct 15;446:199-212 [PMID: 32707292]
  48. Anim Cogn. 2020 Mar;23(2):251-264 [PMID: 31897795]
  49. Brain Behav Evol. 1990;36(1):14-29 [PMID: 2257477]
  50. Eur J Morphol. 1994 Aug;32(2-4):235-42 [PMID: 7803172]
  51. Anim Cogn. 2021 Sep;24(5):923-946 [PMID: 33907938]
  52. J Comp Neurol. 1985 Aug 8;238(2):202-17 [PMID: 4044911]
  53. PLoS One. 2012;7(11):e50355 [PMID: 23209722]
  54. Behav Neurosci. 1996 Oct;110(5):965-80 [PMID: 8918999]
  55. Anim Cogn. 2015 Jan;18(1):19-37 [PMID: 24889655]
  56. Anim Cogn. 2015 Sep;18(5):1125-31 [PMID: 26099740]
  57. Proc Biol Sci. 2006 Aug 22;273(1597):1987-98 [PMID: 16846905]
  58. J Neurosci Methods. 1995 May;58(1-2):173-9 [PMID: 7475225]
  59. Cereb Cortex. 2022 Jan 10;32(2):418-428 [PMID: 34322692]
  60. Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2581-6 [PMID: 21262817]
  61. Behav Brain Res. 1988 Sep 1;30(1):37-42 [PMID: 3166706]
  62. Neurobiol Learn Mem. 2011 Mar;95(3):277-85 [PMID: 21145980]
  63. Behav Processes. 2017 Aug;141(Pt 2):161-171 [PMID: 28167200]
  64. Sci Rep. 2020 Apr 1;10(1):5769 [PMID: 32238844]
  65. Brain Behav Evol. 1991;38(2-3):92-114 [PMID: 1742601]
  66. J Comp Neurol. 1989 May 15;283(3):342-54 [PMID: 2745744]

MeSH Term

Animals
Cichlids
Brain
Telencephalon
Preoptic Area
Equidae

Word Cloud

Created with Highcharts 10.0.0groupvisuallearningshowedsacrificedactivationinferiorfishpS6groupsavoidancetrainednoveltyFishbrainregionscichlidPseudotropheuszebraareascomparedindividualscontrolreceivedobjectfoodrewardstimuluslobestectumadditionalareanucleuslobeBrainneuralcorrelatescognitivefunctionsunknownprojectaimedidentifyinvolvedexpressionproteinmeasured19subjectedfourdifferentbehavioralcontextsControlminimalinteractionschasednethourIndividualsdailytrainingsessionsassociatedayreachedcriterionhabituatedonesetstimulifacedchangetypethree treatment groupslargestopticumpreopticseveraltelencephalicthe torussemicircularisthe reticularformationtoruslateralistertiarygustatorycenterstrongthreetreatmentdiffusussituatedwithinreceivesprominentinputviaglomerulosusfarnothingknownfunctionaldetailspathwaystudyfirsttimeplayimportantrolerecognitionactivatedBehaviorCichlidNeuralactivityVisual

Similar Articles

Cited By