Participation of ATM, SMG1, and DDX5 in a DNA Damage-Induced Alternative Splicing Pathway.
Jennifer J McCann, Donald E Fleenor, Jing Chen, Chun-Hsiang Lai, Thomas E Bass, Michael B Kastan
Author Information
Jennifer J McCann: Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710.
Donald E Fleenor: Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710.
Jing Chen: Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710.
Chun-Hsiang Lai: Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710.
Thomas E Bass: Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710.
Michael B Kastan: Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710.
中文译文
English
Altered cellular responses to DNA damage can contribute to cancer development, progression, and therapeutic resistance. Mutations in key DNA damage response factors occur across many cancer types, and the DNA damage-responsive gene, TP53, is frequently mutated in a high percentage of cancers. We recently reported that an alternative splicing pathway induced by DNA damage regulates alternative splicing of TP53 RNA and further modulates cellular stress responses. Through damage-induced inhibition of the SMG1 kinase, TP53 pre-mRNA is alternatively spliced to generate TP53b mRNA and p53b protein is required for optimal induction of cellular senescence after ionizing radiation-induced DNA damage. Herein, we confirmed and extended these observations by demonstrating that the ATM protein kinase is required for repression of SMG1 kinase activity after ionizing radiation. We found that the RNA helicase and splicing factor, DDX5, interacts with SMG1, is required for alternative splicing of TP53 pre-mRNA to TP53b and TP53c mRNAs after DNA damage, and contributes to radiation-induced cellular senescence. Interestingly, the role of SMG1 in alternative splicing of p53 appears to be distinguishable from its role in regulating nonsense-mediated RNA decay. Thus, ATM, SMG1, and DDX5 participate in a DNA damage-induced alternative splicing pathway that regulates TP53 splicing and modulates radiation-induced cellular senescence.
J Biol Chem. 2001 Jun 22;276(25):22709-14
[PMID: 11331269 ]
Nucleic Acids Res. 2015 Jan;43(Database issue):D512-20
[PMID: 25514926 ]
Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):13057-62
[PMID: 18755892 ]
NAR Cancer. 2020 Sep;2(3):zcaa028
[PMID: 33015627 ]
Oncogene. 2014 Jun 26;33(26):3351-60
[PMID: 23851492 ]
Genes Dev. 2010 Oct 1;24(19):2146-56
[PMID: 20837656 ]
Cancer Discov. 2017 Jul;7(7):766-781
[PMID: 28288992 ]
Cell Cycle. 2009 Feb 1;8(3):498-504
[PMID: 19177017 ]
Nat Rev Mol Cell Biol. 2019 Nov;20(11):698-714
[PMID: 31263220 ]
Nature. 2015 Dec 24;528(7583):517-22
[PMID: 26675721 ]
Cancer Res. 2011 Nov 1;71(21):6718-27
[PMID: 21900401 ]
Nat Protoc. 2009;4(12):1798-806
[PMID: 20010931 ]
Annu Rev Pathol. 2010;5:99-118
[PMID: 20078217 ]
Mol Cancer Ther. 2009 Oct;8(10):2894-902
[PMID: 19808981 ]
Cancer Res. 2022 Feb 15;82(4):523-533
[PMID: 34893509 ]
Genes (Basel). 2021 Sep 23;12(10):
[PMID: 34680866 ]
Cancers (Basel). 2021 Jan 12;13(2):
[PMID: 33445417 ]
Nucleic Acids Res. 2011 Jan;39(1):347-58
[PMID: 20817927 ]
Bioorg Med Chem Lett. 2012 Nov 1;22(21):6636-41
[PMID: 23021994 ]
Genes Dev. 2010 Sep 1;24(17):1939-50
[PMID: 20810650 ]
Science. 2007 May 25;316(5828):1160-6
[PMID: 17525332 ]
EMBO J. 2005 Feb 9;24(3):543-53
[PMID: 15660129 ]
Cold Spring Harb Perspect Med. 2016 Aug 01;6(8):
[PMID: 26801896 ]
Mol Cell. 2017 Jun 15;66(6):801-817
[PMID: 28622525 ]
J Biol Chem. 1999 Dec 31;274(53):37538-43
[PMID: 10608806 ]
Cell Death Differ. 2014 Sep;21(9):1377-87
[PMID: 24926616 ]
Breast Cancer Res. 2011 Jan 20;13(1):R7
[PMID: 21251329 ]
Genes Dev. 2009 May 1;23(9):1091-105
[PMID: 19417104 ]
Biochim Biophys Acta Rev Cancer. 2019 Jan;1871(1):85-98
[PMID: 30419318 ]
Science. 1998 Sep 11;281(5383):1677-9
[PMID: 9733515 ]
Elife. 2021 Oct 26;10:
[PMID: 34698635 ]
Nature. 2003 Jan 30;421(6922):499-506
[PMID: 12556884 ]
Nat Med. 2017 Jun;23(6):703-713
[PMID: 28481359 ]
J Biol Chem. 2021 Nov;297(5):101163
[PMID: 34481841 ]
Semin Cell Dev Biol. 2018 Mar;75:78-87
[PMID: 28866327 ]
Nat Commun. 2015 Mar 26;6:6632
[PMID: 25808464 ]
Blood. 2012 Feb 9;119(6):1490-500
[PMID: 22144182 ]
BMC Bioinformatics. 2021 Sep 10;22(1):433
[PMID: 34507520 ]
Genes Dev. 2011 Jan 15;25(2):153-64
[PMID: 21245168 ]
Cell Res. 2019 Dec;29(12):1027-1034
[PMID: 31729466 ]
Annu Rev Biochem. 2020 Jun 20;89:103-133
[PMID: 32176524 ]
Genes Dev. 2001 Sep 1;15(17):2215-28
[PMID: 11544179 ]
Cell. 2004 Jul 9;118(1):9-17
[PMID: 15242640 ]
Annu Rev Biochem. 2007;76:51-74
[PMID: 17352659 ]
Sci Signal. 2010 Dec 07;3(151):rs3
[PMID: 21139141 ]
Curr Opin Immunol. 1996 Aug;8(4):459-64
[PMID: 8794004 ]
Methods Mol Biol. 2016;1480:73-86
[PMID: 27659976 ]
Sci Signal. 2010 Apr 06;3(116):ra27
[PMID: 20371770 ]
Mol Cell. 2008 Oct 24;32(2):180-9
[PMID: 18951086 ]
Nat Cell Biol. 2000 Dec;2(12):893-8
[PMID: 11146653 ]
Mol Cell. 2012 Feb 24;45(4):567-80
[PMID: 22365833 ]
DNA Repair (Amst). 2002 Jan 22;1(1):3-25
[PMID: 12509294 ]
Nat Methods. 2014 Aug;11(8):783-784
[PMID: 25075903 ]
Cell Metab. 2006 Nov;4(5):377-89
[PMID: 17084711 ]
J Biol Chem. 2012 May 11;287(20):16467-76
[PMID: 22433872 ]
Cell. 2018 Apr 5;173(2):400-416.e11
[PMID: 29625055 ]
DNA Repair (Amst). 2010 Dec 10;9(12):1307-14
[PMID: 21030321 ]
Cancer Discov. 2012 Sep;2(9):812-25
[PMID: 22750847 ]
PLoS One. 2008 Oct 06;3(10):e3354
[PMID: 18836529 ]
Nature. 2015 Jul 2;523(7558):53-8
[PMID: 26106861 ]
Mol Cell. 2004 Jun 4;14(5):585-98
[PMID: 15175154 ]
Adv Cancer Res. 2001;83:209-54
[PMID: 11665719 ]
Annu Rev Genet. 2013;47:139-65
[PMID: 24274751 ]
Oncogene. 1999 Dec 13;18(53):7637-43
[PMID: 10618703 ]
Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3357-62
[PMID: 23404710 ]
Cell Death Differ. 2011 Dec;18(12):1815-24
[PMID: 21941372 ]
RNA Biol. 2012 Nov;9(11):1370-9
[PMID: 23064114 ]
Cancer Res. 2001 Mar 1;61(5):1849-54
[PMID: 11280737 ]
Cell. 2005 Oct 7;123(1):49-63
[PMID: 16213212 ]
Nat Cell Biol. 2009 Sep;11(9):1135-42
[PMID: 19701195 ]
J Biol Chem. 2007 Mar 16;282(11):7799-808
[PMID: 17229728 ]
Nat Rev Mol Cell Biol. 2019 Jul;20(7):406-420
[PMID: 30992545 ]
Nat Methods. 2012 Jul;9(7):671-5
[PMID: 22930834 ]
Nucleic Acids Res. 2006;34(15):4206-15
[PMID: 16935882 ]
Nucleic Acids Res. 2007;35(13):4542-51
[PMID: 17586820 ]
Nucleic Acids Res. 2019 Sep 19;47(16):8838-8859
[PMID: 31329944 ]
K00 CA212225/NCI NIH HHS
P30 CA014236/NCI NIH HHS
R01 ES005777/NIEHS NIH HHS
Humans
Alternative Splicing
Protein Serine-Threonine Kinases
RNA Precursors
DNA Damage
Neoplasms
DEAD-box RNA Helicases
Ataxia Telangiectasia Mutated Proteins
Protein Serine-Threonine Kinases
RNA Precursors
Ddx5 protein, human
DEAD-box RNA Helicases
SMG1 protein, human
ATM protein, human
Ataxia Telangiectasia Mutated Proteins