Galectin-1 mediates interactions between polymorphonuclear leukocytes and vascular endothelial cells, and promotes their extravasation during lipopolysaccharide-induced acute lung injury.

Chiguang Feng, Alan S Cross, Gerardo R Vasta
Author Information
  1. Chiguang Feng: Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA. Electronic address: cfeng@som.umaryland.edu.
  2. Alan S Cross: Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
  3. Gerardo R Vasta: Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Institute of Marine and Environmental Technology, University of Maryland, Baltimore, MD, USA.

Abstract

The lung airway epithelial surface is heavily covered with sialic acids as the terminal carbohydrate on most cell surface glycoconjugates and can be removed by microbial neuraminidases or endogenous sialidases. By desialylating the lung epithelial surface, neuraminidase acts as an important virulence factor in many mucosal pathogens, such as influenza and S. pneumoniae. Desialylation exposes the subterminal galactosyl moieties - the binding glycotopes for galectins, a family of carbohydrate-recognition proteins playing important roles in various aspects of immune responses. Galectin-1 and galectin-3 have been extensively studied in their roles related to host immune responses, but some questions about their role(s) in leukocyte recruitment during lung bacterial infection remain unanswered. In this study, we found that both galectin-1 and galectin-3 bind to polymorphonuclear leukocytes (PMNs) and enhance the interaction of endothelial intercellular adhesion molecule-1 (ICAM-1) with PMNs, which is further increased by PMN desialylation. In addition, we observed that in vitro galectin-1 mediates the binding of PMNs, particularly desialylated PMNs, onto the endothelial cells. Finally, in a murine model for LPS-mediated acute lung injury, we observed that galectin-1 modulates PMN infiltration to the lung without altering the expression of chemoattractant cytokines. We conclude that galectins, particularly galectin-1, may function as adhesion molecules that mediate PMN-endothelial cell interactions, and modulate PMN infiltration during acute lung injury.

Keywords

References

  1. Virology. 1997 Feb 17;228(2):123-31 [PMID: 9123818]
  2. PLoS Pathog. 2020 Aug 4;16(8):e1008741 [PMID: 32750085]
  3. Mol Immunol. 2015 Dec;68(2 Pt A):194-202 [PMID: 26355912]
  4. Respir Res. 2007 Oct 25;8:73 [PMID: 17961210]
  5. Sci Rep. 2015 Jul 30;5:12259 [PMID: 26223819]
  6. Antiviral Res. 2013 Sep;99(3):230-7 [PMID: 23721943]
  7. Am J Physiol Lung Cell Mol Physiol. 2008 Sep;295(3):L379-99 [PMID: 18621912]
  8. J Immunol. 2006 Jan 15;176(2):778-89 [PMID: 16393961]
  9. Glycobiology. 2013 Jan;23(1):32-42 [PMID: 22942212]
  10. J Biol Chem. 2012 Mar 9;287(11):8214-31 [PMID: 22247545]
  11. J Leukoc Biol. 2011 Aug;90(2):313-21 [PMID: 21551251]
  12. J Immunol. 2017 Dec 1;199(11):3721-3730 [PMID: 29158348]
  13. Biochemistry. 2011 Sep 20;50(37):7842-57 [PMID: 21848324]
  14. J Leukoc Biol. 2005 Nov;78(5):1127-35 [PMID: 16260586]
  15. PLoS Pathog. 2010 Jul 15;6(7):e1000993 [PMID: 20657665]
  16. J Immunol. 2008 Mar 1;180(5):3091-102 [PMID: 18292532]
  17. Arch Pediatr. 2003 Nov;10(11):1013-5 [PMID: 14613701]
  18. J Biochem. 1996 Nov;120(5):1007-19 [PMID: 8982870]
  19. Mediators Inflamm. 2016;2016:5813794 [PMID: 27698545]
  20. Vet Res Commun. 2009 Dec;33(8):895-903 [PMID: 19662506]
  21. J Immunol. 1998 Jun 15;160(12):6151-8 [PMID: 9637533]
  22. J Clin Invest. 1998 Jun 1;101(11):2427-37 [PMID: 9616214]
  23. J Virol. 2015 Mar;89(5):2520-9 [PMID: 25505064]
  24. J Biol Chem. 2005 Aug 5;280(31):28623-31 [PMID: 15929990]
  25. J Biol Chem. 2012 May 4;287(19):15966-80 [PMID: 22403397]
  26. Lab Invest. 2006 Jun;86(6):578-90 [PMID: 16607379]
  27. Biochemistry. 2015 Aug 4;54(30):4711-30 [PMID: 26158802]
  28. Am J Pathol. 2013 Sep;183(3):868-80 [PMID: 23831294]
  29. FASEB J. 2008 Mar;22(3):682-90 [PMID: 17965266]
  30. Blood. 2007 Jan 1;109(1):219-27 [PMID: 16940423]
  31. Glycobiology. 2006 Nov;16(11):137R-157R [PMID: 16840800]
  32. J Immunol. 2005 Jul 1;175(1):413-20 [PMID: 15972675]
  33. Free Radic Biol Med. 2020 Jan;146:222-233 [PMID: 31711983]
  34. Glycobiology. 2004 Jun;14(6):481-94 [PMID: 15044387]
  35. Pathog Dis. 2017 Jul 31;75(5): [PMID: 28449072]
  36. Lupus. 2011 Apr;20(5):473-84 [PMID: 21335401]
  37. PLoS One. 2012;7(4):e32359 [PMID: 22496731]
  38. Immunol Lett. 2012 Jan 30;141(2):227-34 [PMID: 22037624]
  39. J Immunol. 1996 May 15;156(10):3939-44 [PMID: 8621934]
  40. Adv Exp Med Biol. 2012;726:201-21 [PMID: 22297515]
  41. Mol Immunol. 2019 Dec;116:80-89 [PMID: 31630079]
  42. J Leukoc Biol. 2004 Feb;75(2):307-13 [PMID: 14634064]
  43. Mol Immunol. 2015 May;65(1):1-16 [PMID: 25597246]
  44. J Cell Biol. 1993 Jan;120(2):545-56 [PMID: 7678422]
  45. Am J Pathol. 2003 Oct;163(4):1505-15 [PMID: 14507657]
  46. Lancet. 2015 Jan 10;385(9963):117-71 [PMID: 25530442]
  47. Intensive Care Med. 1998 Aug;24(8):878-83 [PMID: 9757935]
  48. Cell. 2002 Sep 20;110(6):673-87 [PMID: 12297042]
  49. J Leukoc Biol. 2008 Jun;83(6):1459-66 [PMID: 18372340]
  50. J Immunol. 2013 Nov 1;191(9):4828-37 [PMID: 24068662]
  51. Glycoconj J. 1997 Feb;14(2):267-74 [PMID: 9111144]
  52. J Leukoc Biol. 2010 Dec;88(6):1227-39 [PMID: 20826611]
  53. Ann N Y Acad Sci. 2010 Jan;1183:158-82 [PMID: 20146714]
  54. BMC Vet Res. 2010 Jan 27;6:4 [PMID: 20105300]
  55. J Immunol. 2008 Feb 15;180(4):2466-73 [PMID: 18250456]
  56. J Clin Invest. 1991 Dec;88(6):2067-76 [PMID: 1721626]
  57. Immunol Lett. 2011 Apr 30;136(1):55-60 [PMID: 21147166]
  58. JAMA. 2013 Jan 16;309(3):275-82 [PMID: 23321766]
  59. Front Pharmacol. 2022 Aug 08;13:949264 [PMID: 36003515]
  60. J Biol Chem. 2003 Oct 17;278(42):41282-93 [PMID: 12853445]
  61. Annu Rev Immunol. 2016 May 20;34:243-64 [PMID: 26907217]
  62. Front Pharmacol. 2021 Aug 30;12:715986 [PMID: 34526900]
  63. Cell Host Microbe. 2014 Jul 9;16(1):55-67 [PMID: 25011108]
  64. J Infect Dis. 2003 Mar 15;187(6):1000-9 [PMID: 12660947]
  65. Mol Oral Microbiol. 2012 Aug;27(4):270-83 [PMID: 22759312]
  66. J Immunol. 2002 Feb 15;168(4):1813-22 [PMID: 11823514]
  67. Infect Immun. 2006 Jul;74(7):4014-20 [PMID: 16790774]
  68. Biochimie. 2001 Jul;83(7):667-76 [PMID: 11522396]
  69. Front Immunol. 2012 Jul 13;3:199 [PMID: 22811679]
  70. J Virol. 2011 Oct;85(19):10010-20 [PMID: 21795357]
  71. J Cell Sci. 2015 Jul 1;128(13):2213-9 [PMID: 26092931]
  72. Nat Rev Microbiol. 2009 Jun;7(6):424-38 [PMID: 19444247]
  73. Curr Opin Crit Care. 2001 Feb;7(1):1-7 [PMID: 11373504]
  74. J Infect Dis. 2009 May 15;199(10):1497-505 [PMID: 19392624]

Grants

  1. R01 GM070589/NIGMS NIH HHS
  2. R01 HL086933/NHLBI NIH HHS

MeSH Term

Humans
Mice
Animals
Neutrophils
Lipopolysaccharides
Endothelial Cells
Galectin 1
Galectin 3
Cell Adhesion
Lung
Acute Lung Injury
Streptococcus pneumoniae
Intercellular Adhesion Molecule-1

Chemicals

Lipopolysaccharides
Galectin 1
Galectin 3
Intercellular Adhesion Molecule-1

Word Cloud

Created with Highcharts 10.0.0lunggalectin-1PMNsPMNinjurysurfaceendothelialadhesionacuteepithelialcellimportantDesialylationbindinggalectinsrolesimmuneresponsesGalectin-1galectin-3polymorphonuclearleukocytesobservedmediatesparticularlycellsinfiltrationinteractionsextravasationairwayheavilycoveredsialicacidsterminalcarbohydrateglycoconjugatescanremovedmicrobialneuraminidasesendogenoussialidasesdesialylatingneuraminidaseactsvirulencefactormanymucosalpathogensinfluenzaSpneumoniaeexposessubterminalgalactosylmoieties-glycotopesfamilycarbohydrate-recognitionproteinsplayingvariousaspectsextensivelystudiedrelatedhostquestionsrolesleukocyterecruitmentbacterialinfectionremainunansweredstudyfoundbindenhanceinteractionintercellularmolecule-1ICAM-1increaseddesialylationadditionvitrodesialylatedontoFinallymurinemodelLPS-mediatedmodulateswithoutalteringexpressionchemoattractantcytokinesconcludemayfunctionmoleculesmediatePMN-endothelialmodulatevascularpromoteslipopolysaccharide-inducedAcuteGalectinNeuraminidaseNeutrophil

Similar Articles

Cited By