A genetic linkage map and improved genome assembly of the termite symbiont Termitomyces cryptogamus.

Sabine M E Vreeburg, Ben Auxier, Bas Jacobs, Peter M Bourke, Joost van den Heuvel, Bas J Zwaan, Duur K Aanen
Author Information
  1. Sabine M E Vreeburg: Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands.
  2. Ben Auxier: Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands. ben.auxier@wur.nl.
  3. Bas Jacobs: Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands.
  4. Peter M Bourke: Plant Breeding, Wageningen University & Research, Wageningen, the Netherlands.
  5. Joost van den Heuvel: Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands.
  6. Bas J Zwaan: Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands.
  7. Duur K Aanen: Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands.

Abstract

BACKGROUND: The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may help to stabilize this symbiosis despite horizontal symbiont transmission. An alternative, non-exclusive, hypothesis is that a reduced rate of evolution may contribute to stabilize the symbiosis, the so-called Red King Effect.
METHODS: To explore this concept, we produced the first linkage map of a species of Termitomyces, using genotyping by sequencing (GBS) of 88 homokaryotic offspring. We constructed a highly contiguous genome assembly using PacBio data and a de-novo evidence-based annotation. This improved genome assembly and linkage map allowed for examination of the recombination landscape and its potential effect on the mutualistic lifestyle.
RESULTS: Our linkage map resulted in a genome-wide recombination rate of 22 cM/Mb, lower than that of other related fungi. However, the total map length of 1370 cM was similar to that of other related fungi.
CONCLUSIONS: The apparently decreased rate of recombination is primarily due to genome expansion of islands of gene-poor repetitive sequences. This study highlights the importance of inclusion of genomic context in cross-species comparisons of recombination rate.

Keywords

References

  1. Nucleic Acids Res. 2020 Jan 8;48(D1):D265-D268 [PMID: 31777944]
  2. Insects. 2020 Aug 13;11(8): [PMID: 32823564]
  3. Proc Natl Acad Sci U S A. 2019 Jan 29;116(5):1659-1668 [PMID: 30635424]
  4. Bioinformatics. 2018 Oct 15;34(20):3496-3502 [PMID: 29722786]
  5. Sci Rep. 2020 Sep 4;10(1):14653 [PMID: 32887908]
  6. Mol Plant Microbe Interact. 2015 Mar;28(3):362-73 [PMID: 25208342]
  7. Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11889-94 [PMID: 20547848]
  8. Mol Plant Pathol. 2017 Jan;18(1):75-89 [PMID: 26913498]
  9. Philos Trans R Soc Lond B Biol Sci. 2017 Dec 19;372(1736): [PMID: 29109219]
  10. Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):593-8 [PMID: 12525707]
  11. BMC Genomics. 2015 Mar 11;16:170 [PMID: 25887563]
  12. Genetics. 2006 Mar;172(3):1877-91 [PMID: 16461425]
  13. Genome Biol Evol. 2019 Jul 1;11(7):1857-1869 [PMID: 31209489]
  14. Biol Lett. 2020 Aug;16(8):20200394 [PMID: 32781906]
  15. Genetics. 2004 Aug;167(4):1663-75 [PMID: 15342506]
  16. Trends Ecol Evol. 1999 Feb;14(2):49-53 [PMID: 10234251]
  17. J Genet Genomics. 2021 Jan 20;48(1):75-87 [PMID: 33744162]
  18. Nucleic Acids Res. 2021 Jan 8;49(D1):D344-D354 [PMID: 33156333]
  19. Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):14887-92 [PMID: 12386341]
  20. PLoS One. 2011 May 04;6(5):e19379 [PMID: 21573248]
  21. Bioinformatics. 2007 Oct 1;23(19):2633-5 [PMID: 17586829]
  22. Genome Res. 2009 Nov;19(11):1925-8 [PMID: 19596977]
  23. Mol Ecol. 2006 Oct;15(11):3131-8 [PMID: 16968259]
  24. Bioinformatics. 2018 Jan 15;34(2):306-307 [PMID: 28968706]
  25. Fungal Genet Biol. 2016 May;90:24-30 [PMID: 26342853]
  26. Genome Res. 2017 May;27(5):722-736 [PMID: 28298431]
  27. Genetics. 2018 Sep;210(1):71-82 [PMID: 30045858]
  28. Proc Biol Sci. 1996 Mar 22;263(1368):339-44 [PMID: 8920255]
  29. Methods Mol Biol. 2019;1962:227-245 [PMID: 31020564]
  30. BMC Evol Biol. 2007 Jul 13;7:115 [PMID: 17629911]
  31. Nahrung. 2003 Jun;47(3):213-6 [PMID: 12866626]
  32. BMC Evol Biol. 2014 Jun 05;14:121 [PMID: 24902958]
  33. Bioinformatics. 2017 Dec 01;33(23):3726-3732 [PMID: 29036272]
  34. J Comput Biol. 2012 May;19(5):455-77 [PMID: 22506599]
  35. Bioinformatics. 2013 Apr 15;29(8):1072-5 [PMID: 23422339]
  36. Microbiol Spectr. 2017 Jun;5(3): [PMID: 28597825]
  37. Nat Biotechnol. 2010 Sep;28(9):957-63 [PMID: 20622885]
  38. Nat Biotechnol. 2011 Jan;29(1):24-6 [PMID: 21221095]
  39. Curr Biol. 2005 May 10;15(9):851-5 [PMID: 15886104]
  40. PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
  41. Mol Ecol. 2011 May;20(9):2023-33 [PMID: 21410808]
  42. Heredity (Edinb). 2020 Jun;124(6):699-713 [PMID: 32203246]
  43. Annu Rev Genet. 2019 Dec 3;53:19-44 [PMID: 31430178]
  44. Appl Environ Microbiol. 2000 Dec;66(12):5290-300 [PMID: 11097904]
  45. Mol Cell Biol. 1988 Apr;8(4):1469-73 [PMID: 2967910]
  46. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  47. Insects. 2012 Mar 16;3(1):307-23 [PMID: 26467962]
  48. Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14500-5 [PMID: 25246537]
  49. BMC Biol. 2015 Sep 21;13:78 [PMID: 26390990]
  50. Science. 2009 Nov 20;326(5956):1103-6 [PMID: 19965427]
  51. Bioinformatics. 2018 Sep 15;34(18):3094-3100 [PMID: 29750242]
  52. Bioinformatics. 2010 Mar 15;26(6):841-2 [PMID: 20110278]
  53. Mycol Res. 2005 Mar;109(Pt 3):314-8 [PMID: 15912948]
  54. Microbiol Spectr. 2022 Dec 21;10(6):e0123422 [PMID: 36250871]
  55. Bioinformatics. 2004 Nov 1;20(16):2878-9 [PMID: 15145805]
  56. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  57. Genome Biol. 2006;7 Suppl 1:S11.1-8 [PMID: 16925833]
  58. mBio. 2015 Aug 18;6(4): [PMID: 26286689]
  59. Genome Biol Evol. 2021 Jul 6;13(7): [PMID: 34051082]
  60. Nucleic Acids Res. 2019 Jan 8;47(D1):D309-D314 [PMID: 30418610]
  61. Chromosome Res. 2012 Jul;20(5):635-56 [PMID: 22752455]
  62. Nucleic Acids Res. 2018 Jul 2;46(W1):W95-W101 [PMID: 29771380]
  63. BMC Genet. 2011 Nov 11;12:97 [PMID: 22078575]

Grants

  1. 824.01.002/Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  2. ALWGR.2017.010/Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  3. VICI 86514007/Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  4. BO-26.03-009-004/Topconsortium voor Kennis en Innovatie

MeSH Term

Animals
Isoptera
Termitomyces
Fungi
Genomics
Symbiosis
Genetic Linkage

Word Cloud

Created with Highcharts 10.0.0mapratelinkagegenomerecombinationsymbiosisassemblytermitemaystabilizesymbiontTermitomycesusingGBSimprovedrelatedfungiBACKGROUND:termite-fungus symbiosisancientstablemutualismtwopartnersreproducedisperseindependentlyfoundingcolonysymbioticassociationmustre-establishednewfunguspartnerComplementarityabilitybreakplantsubstratehelpdespitehorizontaltransmissionalternativenon-exclusivehypothesisreducedevolutioncontributeso-calledRedKingEffectMETHODS:exploreconceptproducedfirstspeciesgenotypingsequencing88homokaryoticoffspringconstructedhighlycontiguousPacBiodatade-novoevidence-basedannotationallowedexaminationlandscapepotentialeffectmutualisticlifestyleRESULTS:resultedgenome-wide22 cM/MblowerHowevertotallength1370 cMsimilarCONCLUSIONS:apparentlydecreasedprimarilydueexpansionislandsgene-poorrepetitivesequencesstudyhighlightsimportanceinclusiongenomiccontextcross-speciescomparisonsgeneticcryptogamusBasidiomyceteMutualisticRecombination

Similar Articles

Cited By (1)