Less fatiguability in eccentric than concentric repetitive maximal muscle contractions.

Riku Yoshida, Kazuki Kasahara, Yuta Murakami, Shigeru Sato, Kazunori Nosaka, Masatoshi Nakamura
Author Information
  1. Riku Yoshida: Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
  2. Kazuki Kasahara: Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
  3. Yuta Murakami: Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
  4. Shigeru Sato: Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
  5. Kazunori Nosaka: Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
  6. Masatoshi Nakamura: Faculty of Rehabilitation Sciences, Nishi Kyushu University, 4490-9 Ozaki, Kanzaki, Saga, 842-8585, Japan. nakamuramas@nisikyu-u.ac.jp. ORCID

Abstract

PURPOSE: Changes in elbow flexion torque and biceps brachii electromyogram (EMG) activity over 30 repetitive maximal voluntary concentric-only (CON-only), eccentric-only (ECC-only), and alternative concentric and eccentric (CON-ECC, 30 concentric + 30 eccentric) contractions were examined to compare their muscle fatigue profiles.
METHODS: Fifteen healthy young men performed CON-only, ECC-only and CON-ECC in their maximal effort between 10° and 100° elbow flexion on an isokinetic dynamometer at an angular velocity of 30°/s with a 3-s rest between contractions in a randomised order with ≥ 3 days between conditions. Changes in torque and EMG over the repeated contractions and maximal voluntary isometric contraction (MVC-ISO) torque with EMG before the first contraction and immediately after the last contraction were compared among conditions by two-way repeated measures analysis of variance.
RESULTS: The torque decreased (p < 0.01) from the first to 30th contraction in CON-only (- 49.5 ± 11.0%), ECC-only (- 32.2 ± 7.4%), and concentric (- 62.3 ± 8.7%) as well as eccentric phase (- 58.9 ± 9.3%) in CON-ECC (- 46.0 ± 12.3% overall). The magnitude of the decrease in the torque was greater (p < 0.01) for the CON-only than ECC-only, and the concentric than an eccentric phase in the CON-ECC. However, MVC-ISO torque decreased (p < 0.01) similarly after CON-only (- 42.9 ± 13.8%) and ECC-only (- 40.1 ± 9.2%), which was smaller (p < 0.01) than CON-ECC (- 56.8 ± 9.2%). EMG over contractions decreased (p < 0.01) for all conditions similarly from the first to the last contraction (- 28.5 ± 26.8%), and EMG in MVC-ISO also decreased similarly for all conditions (- 24.7 ± 35.8%).
CONCLUSION: These results suggest greater fatigue resistance in repetitive maximal eccentric than concentric contractions, but the fatigue assessed by MVC-ISO does not show it.

Keywords

References

  1. Abbott BC, Bigland B, Ritchie JM (1952) The physiological cost of negative work. J Physiol 117(3):380–390. https://doi.org/10.1113/jphysiol.1952.sp004755 [DOI: 10.1113/jphysiol.1952.sp004755]
  2. Baudry S, Klass M, Pasquet B, Duchateau J (2007) Age-related fatigability of the ankle dorsiflexor muscles during concentric and eccentric contractions. Eur J Appl Physiol 100(5):515–525. https://doi.org/10.1007/s00421-006-0206-9 [DOI: 10.1007/s00421-006-0206-9]
  3. Chen TC, Hsieh SS (2001) Effects of a 7-day eccentric training period on muscle damage and inflammation. Med Sci Sports Exerc 33(10):1732–1738. https://doi.org/10.1097/00005768-200110000-00018 [DOI: 10.1097/00005768-200110000-00018]
  4. Chen TC, Tseng WC, Huang GL, Chen HL, Tseng KW, Nosaka K (2017) Superior effects of eccentric to concentric knee extensor resistance training on physical fitness, insulin sensitivity and lipid profiles of elderly men. Front Physiol 8:209. https://doi.org/10.3389/fphys.2017.00209 [DOI: 10.3389/fphys.2017.00209]
  5. Cohen J (2013) Statistical power analysis for the behavioral sciences. Routledge [DOI: 10.4324/9780203771587]
  6. Čretnik K, Pleša J, Kozinc Ž, Löfler S, Šarabon N (2022) The effect of eccentric vs traditional resistance exercise on muscle strength, body composition, and functional performance in older adults: a systematic review with meta-analysis. Front Sports Act Living 4:873718. https://doi.org/10.3389/fspor.2022.873718 [DOI: 10.3389/fspor.2022.873718]
  7. Doss WS, Karpovich PV (1965) A comparison of concentric, eccentric, and isometric strength of elbow flexors. J Appl 20(2):351–353. https://doi.org/10.1152/jappl.1965.20.2.351 [DOI: 10.1152/jappl.1965.20.2.351]
  8. Drust B, Rasmussen P, Mohr M, Nielsen B, Nybo L (2005) Elevations in core and muscle temperature impairs repeated sprint performance. Acta Physiol Scand 183(2):181–190. https://doi.org/10.1111/j.1365-201X.2004.01390.x [DOI: 10.1111/j.1365-201X.2004.01390.x]
  9. Enoka RM, Duchateau J (2008) Muscle fatigue: what, why and how it influences muscle function. J Physiol 586(1):11–23. https://doi.org/10.1113/jphysiol.2007.139477 [DOI: 10.1113/jphysiol.2007.139477]
  10. Folland JP, Irish CS, Roberts JC, Tarr JE, Jones DA (2002) Fatigue is not a necessary stimulus for strength gains during resistance training. Br J Sports Med 36(5):370–373. https://doi.org/10.1136/bjsm.36.5.370 [DOI: 10.1136/bjsm.36.5.370]
  11. François B (2011) Electromyography assessment of muscle recruitment strategies during high-intensity exercise. In: Joseph M (ed) Advances in applied electromyography. IntechOpen, Rijeka, p 2. https://doi.org/10.5772/24358
  12. Fürst DO, Osborn M, Nave R, Weber K (1988) The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol 106(5):1563–1572. https://doi.org/10.1083/jcb.106.5.1563 [DOI: 10.1083/jcb.106.5.1563]
  13. Guilhem G, Cornu C, Guével A (2010) Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise. Ann Phys Rehabil Med 53(5):319–341. https://doi.org/10.1016/j.rehab.2010.04.003 [DOI: 10.1016/j.rehab.2010.04.003]
  14. Herzog W  (2014) Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions. J Appl Physiol 116(11):1407–1417. https://doi.org/10.1152/japplphysiol.00069.2013 [DOI: 10.1152/japplphysiol.00069.2013]
  15. Herzog W (2018) Why are muscles strong, and why do they require little energy in eccentric action? J Sport Health Sci 7(3):255–264. https://doi.org/10.1016/j.jshs.2018.05.005 [DOI: 10.1016/j.jshs.2018.05.005]
  16. Hortobágyi T, Katch FI (1990) Eccentric and concentric torque-velocity relationships during arm flexion and extension. Influence of strength level. Eur J Appl Physiol Occup Physiol 60(5):395–401. https://doi.org/10.1007/bf00713506 [DOI: 10.1007/bf00713506]
  17. Kay D, St Clair Gibson A, Mitchell MJ, Lambert MI, Noakes TD (2000) Different neuromuscular recruitment patterns during eccentric, concentric and isometric contractions. J Electromyogr Kinesiol 10(6):425–431. https://doi.org/10.1016/s1050-6411(00)00031-6 [DOI: 10.1016/s1050-6411(00)00031-6]
  18. Kossev A, Christova P (1998) Discharge pattern of human motor units during dynamic concentric and eccentric contractions. Electroencephalogr Clin Neurophysiol 109(3):245–255. https://doi.org/10.1016/s0924-980x(98)00012-5 [DOI: 10.1016/s0924-980x(98)00012-5]
  19. Lastayo PC, Reich TE, Urquhart M, Hoppeler H, Lindstedt SL (1999) Chronic eccentric exercise: improvements in muscle strength can occur with little demand for oxygen. Am J Physiol 276(2):R611-615. https://doi.org/10.1152/ajpregu.1999.276.2.R611 [DOI: 10.1152/ajpregu.1999.276.2.R611]
  20. Nuzzo JL, Nosaka K (2022) Comment on: Stepwise load reduction rraining: a new trainingconcept for skeletal muscle and energy systems". Sports Med 2022:1–4. https://doi.org/10.1007/s40279-022-01661-8 [DOI: 10.1007/s40279-022-01661-8]
  21. Pasquet B, Carpentier A, Duchateau J, Hainaut K (2000) Muscle fatigue during concentric and eccentric contractions. Muscle Nerve 23(11):1727–1735. https://doi.org/10.1002/1097-4598(200011)23:11%3c1727::aid-mus9%3e3.0.co;2-y [DOI: 10.1002/1097-4598(200011)23]
  22. Peñailillo L, Blazevich A, Numazawa H, Nosaka K (2013) Metabolic and muscle damage profiles of concentric versus repeated eccentric cycling. Med Sci Sports Exerc 45(9):1773–1781. https://doi.org/10.1249/MSS.0b013e31828f8a73 [DOI: 10.1249/MSS.0b013e31828f8a73]
  23. Roig M, O’Brien K, Kirk G, Murray R, McKinnon P, Shadgan B, Reid WD (2009) The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis. Br J Sports Med 43(8):556–568. https://doi.org/10.1136/bjsm.2008.051417 [DOI: 10.1136/bjsm.2008.051417]
  24. Royer N, Nosaka K, Doguet V, Jubeau M (2022) Neuromuscular responses to isometric, concentric and eccentric contractions of the knee extensors at the same torque-time integral. Eur J Appl Physiol 122(1):127–139. https://doi.org/10.1007/s00421-021-04817-y [DOI: 10.1007/s00421-021-04817-y]
  25. Ruas CV, Latella C, Taylor JL, Haff GG, Nosaka K (2022) Comparison between eccentric-only and coupled concentric-eccentric contractions for neuromuscular fatigue and muscle damage. Med Sci Sports Exerc 54(10):1635–1646. https://doi.org/10.1249/mss.0000000000002959 [DOI: 10.1249/mss.0000000000002959]
  26. Sato S, Yoshida R, Murakoshi F, Sasaki Y, Yahata K, Kasahara K, Nunes JP, Nosaka K, Nakamura M (2022a) Comparison between concentric-only, eccentric-only, and concentric-eccentric resistance training of the elbow flexors for their effects on muscle strength and hypertrophy. Eur J Appl Physiol. https://doi.org/10.1007/s00421-022-05035-w [DOI: 10.1007/s00421-022-05035-w]
  27. Sato S, Yoshida R, Murakoshi F, Sasaki Y, Yahata K, Nosaka K, Nakamura M (2022b) Effect of daily 3-s maximum voluntary isometric, concentric or eccentric contraction on elbow flexor strength. Scand J Med Sci Sports. https://doi.org/10.1111/sms.14138 [DOI: 10.1111/sms.14138]
  28. Shibata K, Yamaguchi T, Takizawa K, Nosaka K (2023) Comparison in repetitions to failure between concentric-only and eccentric-only dumbbell arm curl exercise at four different relative intensities. J Strength Cond Res. https://doi.org/10.1519/jsc.0000000000004470 [DOI: 10.1519/jsc.0000000000004470]
  29. Souron R, Nosaka K, Jubeau M (2018) Changes in central and peripheral neuromuscular fatigue indices after concentric versus eccentric contractions of the knee extensors. Eur J Appl Physiol 118(4):805–816. https://doi.org/10.1007/s00421-018-3816-0 [DOI: 10.1007/s00421-018-3816-0]
  30. Tesch PA, Dudley GA, Duvoisin MR, Hather BM, Harris RT (1990) Force and EMG signal patterns during repeated bouts of concentric or eccentric muscle actions. Acta Physiol Scand 138(3):263–271. https://doi.org/10.1111/j.1748-1716.1990.tb08846.x [DOI: 10.1111/j.1748-1716.1990.tb08846.x]
  31. Tseng WC, Nosaka K, Tseng KW, Chou TY, Chen TC (2020) Contralateral effects by unilateral eccentric versus concentric resistance training. Med Sci Sports Exerc 52(2):474–483. https://doi.org/10.1249/mss.0000000000002155 [DOI: 10.1249/mss.0000000000002155]
  32. Wu Y, Li RC, Maffulli N, Chan KM, Chan JL (1997) Relationship between isokinetic concentric and eccentric contraction modes in the knee flexor and extensor muscle groups. J Orthop Sports Phys Ther 26(3):143–149. https://doi.org/10.2519/jospt.1997.26.3.143 [DOI: 10.2519/jospt.1997.26.3.143]
  33. Yoshida R, Sato S, Kasahara K, Murakami Y, Murakoshi F, Aizawa K, Koizumi R, Nosaka K, Nakamura M (2022) Greater effects by performing a small number of eccentric contractions daily than a larger number of them once a week. Scand J Med Sci Sports. https://doi.org/10.1111/sms.14220 [DOI: 10.1111/sms.14220]

Grants

  1. 19K19890/JSPS KAKENHI

MeSH Term

Male
Humans
Muscle Contraction
Muscle, Skeletal
Muscle Fatigue
Isometric Contraction
Arm
Torque

Word Cloud

Created with Highcharts 10.0.0contractiontorqueeccentriccontractionsEMGmaximalCON-onlyECC-onlyconcentricCON-ECCp < 001conditionsMVC-ISOdecreasedrepetitivevoluntarymusclefatiguefirstsimilarly8%Changeselbowflexion30repeatedisometriclastphase3%greater2%PURPOSE:bicepsbrachiielectromyogramactivityconcentric-onlyeccentric-onlyalternativeconcentric + 30examinedcompareprofilesMETHODS:Fifteenhealthyyoungmenperformedeffort10°100°isokineticdynamometerangularvelocity30°/s3-srestrandomisedorderwith ≥ 3 daysimmediatelycomparedamongtwo-waymeasuresanalysisvarianceRESULTS:30th- 495 ± 110%- 322 ± 74%- 623 ± 87%well- 589 ± 9- 460 ± 12overallmagnitudedecreaseHowever- 429 ± 13- 401 ± 9smaller- 568 ± 9- 285 ± 26also- 247 ± 35CONCLUSION:resultssuggestresistanceassessedshowitLessfatiguabilityElbowflexorsElectromyogramLengtheningMaximal

Similar Articles

Cited By (1)