Dynamic transcriptomic responses to divergent acute exercise stimuli in young adults.

Kaleen M Lavin, Zachary A Graham, Jeremy S McAdam, Samia M O'Bryan, Devin Drummer, Margaret B Bell, Christian J Kelley, Manoel E Lixandrão, Brandon Peoples, S Craig Tuggle, Regina S Seay, Kendall Van Keuren-Jensen, Matthew J Huentelman, Patrick Pirrotte, Rebecca Reiman, Eric Alsop, Elizabeth Hutchins, Jerry Antone, Anna Bonfitto, Bessie Meechoovet, Joanna Palade, Joshua S Talboom, Amber Sullivan, Inmaculada Aban, Kalyani Peri, Timothy J Broderick, Marcas M Bamman
Author Information
  1. Kaleen M Lavin: Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States. ORCID
  2. Zachary A Graham: Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States.
  3. Jeremy S McAdam: Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States.
  4. Samia M O'Bryan: UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States.
  5. Devin Drummer: UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States. ORCID
  6. Margaret B Bell: UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States.
  7. Christian J Kelley: UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States.
  8. Manoel E Lixandrão: UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States.
  9. Brandon Peoples: UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States.
  10. S Craig Tuggle: Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States.
  11. Regina S Seay: UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States.
  12. Kendall Van Keuren-Jensen: Cancer & Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States.
  13. Matthew J Huentelman: Cancer & Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States.
  14. Patrick Pirrotte: Cancer & Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States.
  15. Rebecca Reiman: Cancer & Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States.
  16. Eric Alsop: Cancer & Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States.
  17. Elizabeth Hutchins: Cancer & Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States.
  18. Jerry Antone: Cancer & Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States.
  19. Anna Bonfitto: Cancer & Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States.
  20. Bessie Meechoovet: Cancer & Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States.
  21. Joanna Palade: Cancer & Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States.
  22. Joshua S Talboom: Cancer & Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States.
  23. Amber Sullivan: UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States.
  24. Inmaculada Aban: Department of Biostatistics, The University of Alabama at Birmingham, Birmingham, Alabama, United States.
  25. Kalyani Peri: Department of Biostatistics, The University of Alabama at Birmingham, Birmingham, Alabama, United States.
  26. Timothy J Broderick: Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States.
  27. Marcas M Bamman: Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States. ORCID

Abstract

Acute exercise elicits dynamic transcriptional changes that, when repeated, form the fundamental basis of health, resilience, and performance adaptations. While moderate-intensity endurance training combined with conventional resistance training (traditional, TRAD) is often prescribed and recommended by public health guidance, high-intensity training combining maximal-effort intervals with intensive, limited-rest resistance training is a time-efficient alternative that may be used tactically (HITT) to confer similar benefits. Mechanisms of action of these distinct stimuli are incompletely characterized and have not been directly compared. We assessed transcriptome-wide responses in skeletal muscle and circulating extracellular vesicles (EVs) to a single exercise bout in young adults randomized to TRAD ( = 21, 12 M/9 F, 22 ± 3 yr) or HITT ( = 19, 11 M/8 F, 22 ± 2 yr). Next-generation sequencing captured small, long, and circular RNA in muscle and EVs. Analysis identified differentially expressed transcripts (|logFC|>1, FDR ≤ 0.05) immediately (h0, EVs only), h3, and h24 postexercise within and between exercise protocols. In aaddition, all apparently responsive transcripts (FDR < 0.2) underwent singular value decomposition to summarize data structures into latent variables (LVs) to deconvolve molecular expression circuits and interregulatory relationships. LVs were compared across time and exercise protocol. TRAD, a longer but less intense stimulus, generally elicited a stronger transcriptional response than HITT, but considerable overlap and key differences existed. Findings reveal shared and unique molecular responses to the exercise stimuli and lay groundwork toward establishing relationships between protein-coding genes and lesser-understood transcripts that serve regulatory roles following exercise. Future work should advance the understanding of these circuits and whether they repeat in other populations or following other types of exercise/stress. We examined small and long transcriptomics in skeletal muscle and serum-derived extracellular vesicles before and after a single exposure to traditional combined exercise (TRAD) and high-intensity tactical training (HITT). Across 40 young adults, we found more consistent protein-coding gene responses to TRAD, whereas HITT elicited differential expression of microRNA enriched in brain regions. Follow-up analysis revealed relationships and temporal dynamics across transcript networks, highlighting potential avenues for research into mechanisms of exercise response and adaptation.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.21094795

References

  1. Cell. 2019 Apr 4;177(2):446-462.e16 [PMID: 30951671]
  2. Genome Biol. 2014 Feb 03;15(2):R29 [PMID: 24485249]
  3. Exp Physiol. 2020 Mar;105(3):511-521 [PMID: 31917487]
  4. Proteomics. 2019 Jan;19(1-2):e1800154 [PMID: 30350444]
  5. Nucleic Acids Res. 2013 Jan;41(Database issue):D246-51 [PMID: 23042674]
  6. Front Cell Dev Biol. 2022 Mar 04;10:804164 [PMID: 35317387]
  7. Front Mol Biosci. 2022 Jan 11;8:815410 [PMID: 35087871]
  8. Physiol Genomics. 2021 May 1;53(5):206-221 [PMID: 33870722]
  9. BMJ. 2020 Oct 7;371:m3485 [PMID: 33028588]
  10. Science. 2015 Jan 23;347(6220):1260419 [PMID: 25613900]
  11. BMC Genomics. 2018 May 5;19(1):331 [PMID: 29728066]
  12. BMC Genomics. 2018 Mar 6;19(1):180 [PMID: 29510677]
  13. Nat Commun. 2020 Jan 24;11(1):470 [PMID: 31980607]
  14. J Extracell Vesicles. 2017 May 24;6(1):1317577 [PMID: 28717417]
  15. Appl Physiol Nutr Metab. 2020 Jun;45(6):581-590 [PMID: 31661631]
  16. Int J Mol Sci. 2018 Nov 03;19(11): [PMID: 30400273]
  17. Cell. 2020 Jun 25;181(7):1464-1474 [PMID: 32589957]
  18. J Appl Physiol (1985). 2014 Mar 1;116(5):582-92 [PMID: 24408997]
  19. Nat Biotechnol. 2018 Sep;36(8):746-757 [PMID: 30010675]
  20. Neural Plast. 2016;2016:4583674 [PMID: 26819767]
  21. J Physiol. 2010 Dec 1;588(Pt 23):4795-810 [PMID: 20921196]
  22. Am J Physiol Cell Physiol. 2022 Feb 1;322(2):C246-C259 [PMID: 34910603]
  23. Cell. 2020 May 28;181(5):1112-1130.e16 [PMID: 32470399]
  24. J Sport Health Sci. 2018 Apr;7(2):191-196 [PMID: 30356443]
  25. Front Sports Act Living. 2022 Jun 03;4:903992 [PMID: 35721874]
  26. Front Physiol. 2020 Jun 17;11:653 [PMID: 32625117]
  27. J Appl Physiol (1985). 2007 Nov;103(5):1744-51 [PMID: 17823296]
  28. Exp Gerontol. 2018 Jun;106:116-124 [PMID: 29481967]
  29. Exp Gerontol. 2017 Dec 1;99:98-109 [PMID: 28964826]
  30. Int J Mol Sci. 2021 Feb 03;22(4): [PMID: 33546468]
  31. Neuropsychopharmacology. 2019 Dec;44(13):2155-2158 [PMID: 31527863]
  32. Cell Syst. 2019 Apr 24;8(4):352-357.e3 [PMID: 30956140]
  33. Mil Med. 2016 Nov;181(11):e1508-e1514 [PMID: 27849484]
  34. J Physiol. 2017 May 1;595(9):2915-2930 [PMID: 27748956]
  35. Front Physiol. 2020 Jun 10;11:605 [PMID: 32587527]
  36. Front Physiol. 2020 Sep 15;11:567614 [PMID: 33071823]
  37. Compr Physiol. 2022 Mar 9;12(2):3193-3279 [PMID: 35578962]
  38. Int J Sports Med. 1992 Aug;13(6):452-61 [PMID: 1428375]
  39. Nucleic Acids Res. 2016 Jan 4;44(D1):D457-62 [PMID: 26476454]
  40. Physiol Genomics. 2013 Jun 17;45(12):499-507 [PMID: 23632419]
  41. Sci Data. 2021 Oct 28;8(1):276 [PMID: 34711851]
  42. Sports Med. 1987 Nov-Dec;4(6):381-94 [PMID: 3324256]
  43. Br J Sports Med. 2020 Dec;54(24):1451-1462 [PMID: 33239350]
  44. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  45. Physiology (Bethesda). 2019 Mar 1;34(2):112-122 [PMID: 30724133]
  46. F1000Res. 2016 Jun 17;5:1408 [PMID: 27441086]
  47. Bioinformatics. 2017 Sep 15;33(18):2938-2940 [PMID: 28645171]
  48. J Appl Physiol (1985). 2015 Mar 1;118(5):569-78 [PMID: 25539934]
  49. Nucleic Acids Res. 2019 Jan 8;47(D1):D330-D338 [PMID: 30395331]
  50. iScience. 2020 Jun 26;23(6):101182 [PMID: 32512385]
  51. Exerc Sport Sci Rev. 2017 Jan;45(1):24-33 [PMID: 27782911]
  52. Nat Methods. 2017 Apr;14(4):417-419 [PMID: 28263959]
  53. J Appl Physiol (1985). 2020 Jan 1;128(1):87-99 [PMID: 31751180]
  54. Nat Cell Biol. 2009 Mar;11(3):228-34 [PMID: 19255566]
  55. Nat Methods. 2019 Jul;16(7):607-610 [PMID: 31249421]
  56. Am J Physiol. 1993 Dec;265(6 Pt 1):C1597-603 [PMID: 7506491]
  57. F1000Res. 2020 Dec 10;9:1444 [PMID: 33604029]
  58. Am J Physiol Endocrinol Metab. 2022 Mar 1;322(3):E260-E277 [PMID: 35068187]
  59. NAR Genom Bioinform. 2020 Sep;2(3):lqaa078 [PMID: 33015620]

Grants

  1. IK2 RX002781/RRD VA
  2. P30 CA033572/NCI NIH HHS
  3. T32 HL007457/NHLBI NIH HHS

MeSH Term

Humans
Young Adult
Transcriptome
Exercise
Gene Expression Profiling
Resistance Training
Muscle, Skeletal

Word Cloud

Created with Highcharts 10.0.0exercisetrainingTRADHITTresponsesmusclestimuliskeletalextracellularvesiclesEVsyoungadultstranscriptsexpressionrelationshipstranscriptionalhealthcombinedresistancetraditionalhigh-intensitycomparedsingle=FyrsmalllongFDR0LVsmolecularcircuitsacrosselicitedresponseprotein-codingfollowingtranscriptomicsgeneAcuteelicitsdynamicchangesrepeatedformfundamentalbasisresilienceperformanceadaptationsmoderate-intensityenduranceconventionaloftenprescribedrecommendedpublicguidancecombiningmaximal-effortintervalsintensivelimited-resttime-efficientalternativemayusedtacticallyconfersimilarbenefitsMechanismsactiondistinctincompletelycharacterizeddirectlyassessedtranscriptome-widecirculatingboutrandomized2112M/922 ± 31911M/822 ± 2Next-generationsequencingcapturedcircularRNAAnalysisidentifieddifferentiallyexpressed|logFC|>105immediatelyh0h3h24postexercisewithinprotocolsaadditionapparentlyresponsive<2underwentsingularvaluedecompositionsummarizedatastructureslatentvariablesdeconvolveinterregulatorytimeprotocollongerlessintensestimulusgenerallystrongerconsiderableoverlapkeydifferencesexistedFindingsrevealshareduniquelaygroundworktowardestablishinggeneslesser-understoodserveregulatoryrolesFutureworkadvanceunderstandingwhetherrepeatpopulationstypesexercise/stressexaminedserum-derivedexposuretacticalAcross40foundconsistentwhereasdifferentialmicroRNAenrichedbrainregionsFollow-upanalysisrevealedtemporaldynamicstranscriptnetworkshighlightingpotentialavenuesresearchmechanismsadaptationDynamictranscriptomicdivergentacutephysiology

Similar Articles

Cited By