Phylogeny-guided genome mining of roseocin family lantibiotics to generate improved variants of roseocin.

Sandeep Chaudhary, Shweta Kishen, Mangal Singh, Sunanda Jassal, Reeva Pathania, Kalpana Bisht, Dipti Sareen
Author Information
  1. Sandeep Chaudhary: Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
  2. Shweta Kishen: Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
  3. Mangal Singh: Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
  4. Sunanda Jassal: Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
  5. Reeva Pathania: Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
  6. Kalpana Bisht: Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
  7. Dipti Sareen: Department of Biochemistry, Panjab University, Chandigarh, 160014, India. diptsare@pu.ac.in. ORCID

Abstract

Roseocin, the two-peptide lantibiotic from Streptomyces roseosporus, carries extensive intramolecular (methyl)lanthionine bridging in the peptides and exhibits synergistic antibacterial activity against clinically relevant Gram-positive pathogens. Both peptides have a conserved leader but a diverse core region. The biosynthesis of roseocin involves post-translational modification of the two precursor peptides by a single promiscuous lanthipeptide synthetase, RosM, to install an indispensable disulfide bond in the Rosα core along with four and six thioether rings in Rosα and Rosβ cores, respectively. RosM homologs in the phylum actinobacteria were identified here to reveal twelve other members of the roseocin family which diverged into three types of biosynthetic gene clusters (BGCs). Further, the evolutionary rate among the BGC variants and analysis of variability within the core peptide versus leader peptide revealed a phylum-dependent lanthipeptide evolution. Analysis of horizontal gene transfer revealed its role in the generation of core peptide diversity. The naturally occurring diverse congeners of roseocin peptides identified from the mined novel BGCs were carefully aligned to identify the conserved sites and the substitutions in the core peptide region. These selected sites in the Rosα peptide were mutated for permitted substitutions, expressed heterologously in E. coli, and post-translationally modified by RosM in vivo. Despite a limited number of generated variants, two variants, RosαL8F and RosαL8W exhibited significantly improved inhibitory activity in a species-dependent manner compared to the wild-type roseocin. Our study proves that a natural repository of evolved variants of roseocin is present in nature and the key variations can be used to generate improved variants.

Keywords

References

  1. Mol Biol Evol. 1993 Mar;10(2):271-81 [PMID: 8487630]
  2. J Biol Chem. 2009 Sep 18;284(38):25962-72 [PMID: 19620240]
  3. mBio. 2019 May 7;10(3): [PMID: 31064832]
  4. ACS Chem Biol. 2014 Nov 21;9(11):2686-94 [PMID: 25244001]
  5. Nat Chem Biol. 2010 Jan;6(1):9-18 [PMID: 20016494]
  6. Cell Microbiol. 2003 Oct;5(10):661-9 [PMID: 12969372]
  7. Nature. 2022 Jan;601(7894):606-611 [PMID: 34987225]
  8. Nucleic Acids Res. 2019 Jul 2;47(W1):W260-W265 [PMID: 31028399]
  9. Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10430-5 [PMID: 20479271]
  10. Syst Biol. 2007 Aug;56(4):564-77 [PMID: 17654362]
  11. Chem Rev. 2017 Apr 26;117(8):5457-5520 [PMID: 28135077]
  12. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  13. J Am Chem Soc. 2017 Dec 13;139(49):17803-17810 [PMID: 29164875]
  14. Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18361-6 [PMID: 23071302]
  15. ACS Chem Biol. 2009 Oct 16;4(10):865-74 [PMID: 19678697]
  16. J Am Chem Soc. 2014 Sep 24;136(38):13150-3 [PMID: 25207953]
  17. Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17243-8 [PMID: 17085596]
  18. Nat Biotechnol. 2012 Oct;30(10):918-20 [PMID: 23051804]
  19. Nucleic Acids Res. 2020 Jan 8;48(D1):D265-D268 [PMID: 31777944]
  20. Mol Microbiol. 2020 Feb;113(2):326-337 [PMID: 31696567]
  21. Science. 2004 Jan 30;303(5658):679-81 [PMID: 14752162]
  22. Cell Chem Biol. 2016 Feb 18;23(2):246-256 [PMID: 27028884]
  23. Bioinformatics. 2011 Jul 1;27(13):i248-56 [PMID: 21685078]
  24. Front Microbiol. 2015 Nov 27;6:1363 [PMID: 26640466]
  25. J Mol Biol. 2019 Aug 23;431(18):3520-3530 [PMID: 31100388]
  26. BMC Genomics. 2020 Jun 3;21(1):387 [PMID: 32493223]
  27. Nat Prod Rep. 2013 Jan;30(1):108-60 [PMID: 23165928]
  28. J Biol Chem. 2016 Dec 30;291(53):27228-27238 [PMID: 27875306]
  29. Nat Prod Rep. 2021 Jan 1;38(1):130-239 [PMID: 32935693]
  30. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  31. Bioinformatics. 2001 Aug;17(8):754-5 [PMID: 11524383]
  32. Nat Prod Rep. 2019 Sep 1;36(9):1295-1312 [PMID: 31475269]
  33. Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5241-6 [PMID: 22431611]
  34. PLoS One. 2014 Sep 26;9(9):e108277 [PMID: 25259891]
  35. J Ind Microbiol Biotechnol. 2017 Feb;44(2):285-293 [PMID: 27885438]
  36. J Am Chem Soc. 2014 Jul 23;136(29):10450-9 [PMID: 24972336]
  37. J Am Chem Soc. 2016 Apr 27;138(16):5254-7 [PMID: 27074593]
  38. Front Microbiol. 2016 Jul 19;7:1115 [PMID: 27486447]
  39. ACS Synth Biol. 2022 May 20;11(5):1949-1957 [PMID: 35504017]
  40. Chem Biol. 2008 Oct 20;15(10):1035-45 [PMID: 18940665]
  41. Front Neurosci. 2017 Feb 14;11:73 [PMID: 28261050]
  42. PLoS One. 2014 Mar 12;9(3):e91352 [PMID: 24621781]
  43. BMC Biotechnol. 2008 Dec 04;8:91 [PMID: 19055817]
  44. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  45. BMC Biol. 2010 May 25;8:70 [PMID: 20500830]
  46. ACS Infect Dis. 2019 Feb 8;5(2):199-207 [PMID: 30540905]
  47. Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259 [PMID: 30931475]
  48. Biochem Soc Trans. 2022 Oct 31;50(5):1315-1328 [PMID: 36196987]
  49. Biotechnol Bioeng. 2019 Nov;116(11):3053-3062 [PMID: 31350903]
  50. FEMS Microbiol Rev. 2001 May;25(3):285-308 [PMID: 11348686]
  51. ACS Cent Sci. 2017 Jun 28;3(6):629-638 [PMID: 28691075]
  52. Biochemistry. 2013 Aug 13;52(32):5387-95 [PMID: 23869662]
  53. Angew Chem Int Ed Engl. 2015 Sep 14;54(38):11254-8 [PMID: 26211520]
  54. Future Microbiol. 2019 Dec;14:1573-1587 [PMID: 32019322]
  55. Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85 [PMID: 26673716]
  56. ACS Chem Biol. 2021 Jun 18;16(6):1019-1029 [PMID: 34085816]
  57. J Am Chem Soc. 2011 Nov 9;133(44):17544-7 [PMID: 22003874]
  58. Science. 2022 May 27;376(6596):991-996 [PMID: 35617397]
  59. Nat Chem Biol. 2018 Apr;14(4):375-380 [PMID: 29507389]
  60. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W35-41 [PMID: 18442995]
  61. Appl Environ Microbiol. 2018 Jul 17;84(15): [PMID: 29776930]
  62. BMC Bioinformatics. 2016 Apr 16;17:164 [PMID: 27083490]
  63. ACS Synth Biol. 2021 Oct 15;10(10):2579-2591 [PMID: 34554737]
  64. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  65. ACS Infect Dis. 2021 Aug 13;7(8):2445-2454 [PMID: 34265205]
  66. Microb Biotechnol. 2013 Sep;6(5):564-75 [PMID: 23433070]
  67. Nucleic Acids Res. 2019 Jul 2;47(W1):W81-W87 [PMID: 31032519]
  68. Protein Sci. 2013 Nov;22(11):1478-89 [PMID: 24038659]
  69. Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):E5424-E5433 [PMID: 28630351]
  70. PLoS One. 2012;7(9):e44913 [PMID: 23028676]
  71. Sci Rep. 2019 May 9;9(1):7169 [PMID: 31073133]

Grants

  1. 09/135(0773)/2017-EMR-I/Council for Scientific and Industrial Research, New Delhi
  2. CRG/2018/004218/DST-SERB