A multi-strain model with asymptomatic transmission: Application to COVID-19 in the US.

Shasha Gao, Mingwang Shen, Xueying Wang, Jin Wang, Maia Martcheva, Libin Rong
Author Information
  1. Shasha Gao: School of Mathematics and Statistics, Jiangxi Normal University, Nanchang, 330000, China; Department of Mathematics, University of Florida, Gainesville, FL 32611, United States of America.
  2. Mingwang Shen: China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
  3. Xueying Wang: Department of Mathematics and Statistics, Washington State University, Pullman, WA 99163, United States of America.
  4. Jin Wang: Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, United States of America.
  5. Maia Martcheva: Department of Mathematics, University of Florida, Gainesville, FL 32611, United States of America.
  6. Libin Rong: Department of Mathematics, University of Florida, Gainesville, FL 32611, United States of America. Electronic address: libinrong@ufl.edu.

Abstract

COVID-19, induced by the SARS-CoV-2 infection, has caused an unprecedented pandemic in the world. New variants of the virus have emerged and dominated the virus population. In this paper, we develop a multi-strain model with asymptomatic transmission to study how the asymptomatic or pre-symptomatic infection influences the transmission between different strains and control strategies that aim to mitigate the pandemic. Both analytical and numerical results reveal that the competitive exclusion principle still holds for the model with the asymptomatic transmission. By fitting the model to the COVID-19 case and viral variant data in the US, we show that the omicron variants are more transmissible but less fatal than the previously circulating variants. The basic reproduction number for the omicron variants is estimated to be 11.15, larger than that for the previous variants. Using mask mandate as an example of non-pharmaceutical interventions, we show that implementing it before the prevalence peak can significantly lower and postpone the peak. The time of lifting the mask mandate can affect the emergence and frequency of subsequent waves. Lifting before the peak will result in an earlier and much higher subsequent wave. Caution should also be taken to lift the restriction when a large portion of the population remains susceptible. The methods and results obtained her e may be applied to the study of the dynamics of other infectious diseases with asymptomatic transmission using other control measures.

Keywords

References

  1. Physica A. 2022 Aug 1;599:127452 [PMID: 35498561]
  2. Math Biosci. 2017 Jun;288:94-108 [PMID: 28284964]
  3. J Travel Med. 2022 May 31;29(3): [PMID: 35262737]
  4. Vaccine. 2021 Apr 15;39(16):2295-2302 [PMID: 33771391]
  5. BMC Infect Dis. 2021 May 25;21(1):476 [PMID: 34034662]
  6. Chaos Solitons Fractals. 2022 Apr;157:111927 [PMID: 35185299]
  7. Lancet. 2021 Nov 13;398(10313):1825-1835 [PMID: 34717829]
  8. J Biol Dyn. 2009 Mar;3(2-3):235-51 [PMID: 22880832]
  9. Epidemics. 2020 Jun;31:100392 [PMID: 32446187]
  10. Bull Math Biol. 2007 Aug;69(6):2027-60 [PMID: 17450401]
  11. Math Biosci. 2005 May;195(1):23-46 [PMID: 15922003]
  12. Bull Math Biol. 2022 Jan 24;84(3):32 [PMID: 35067773]
  13. Math Biosci Eng. 2020 Sep 10;17(5):5961-5986 [PMID: 33120585]
  14. J Math Biol. 2021 Sep 14;83(4):34 [PMID: 34522994]
  15. Bull Math Biol. 2008 Jan;70(1):134-55 [PMID: 17701259]
  16. Lancet Reg Health Am. 2022 Jan;5:100133 [PMID: 34849504]
  17. J Biol Dyn. 2020 Dec;14(1):389-408 [PMID: 32498655]
  18. J Math Biol. 2018 Aug;77(2):343-376 [PMID: 29274002]
  19. Math Biosci Eng. 2020 Nov 26;18(1):182-213 [PMID: 33525087]
  20. J Biol Dyn. 2013;7 Suppl 1:47-67 [PMID: 23421610]
  21. Results Phys. 2021 Feb;21:103776 [PMID: 33432294]
  22. PLoS One. 2021 Sep 16;16(9):e0257512 [PMID: 34529745]
  23. J R Soc Interface. 2021 May;18(178):20201014 [PMID: 34006127]
  24. Math Biosci Eng. 2010 Jan;7(1):123-47 [PMID: 20104952]
  25. Vaccine. 2008 Jul 18;26 Suppl 3:C25-30 [PMID: 18773535]
  26. Chaos Solitons Fractals. 2021 Nov;152:111359 [PMID: 34483500]
  27. J Urban Health. 2021 Apr;98(2):197-204 [PMID: 33649905]
  28. J Theor Biol. 2022 Jul 21;545:111117 [PMID: 35513167]
  29. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11541-11550 [PMID: 32385153]
  30. Math Biosci Eng. 2021 Jun 18;18(5):5409-5426 [PMID: 34517494]
  31. Math Biosci. 2020 Jul;325:108364 [PMID: 32360770]
  32. J R Soc Interface. 2008 Jan 6;5(18):3-13 [PMID: 17459810]
  33. J Theor Biol. 2014 Jun 7;350:98-109 [PMID: 24412334]
  34. Bull Math Biol. 2012 Aug;74(8):1789-817 [PMID: 22639338]
  35. Elife. 2021 Apr 26;10: [PMID: 33899740]
  36. Proc Natl Acad Sci U S A. 2021 Jan 26;118(4): [PMID: 33431650]
  37. China CDC Wkly. 2021 Jul 2;3(27):584-586 [PMID: 34594941]
  38. Nat Hum Behav. 2021 Jul;5(7):947-953 [PMID: 33972767]
  39. Proc Natl Acad Sci U S A. 2021 Mar 2;118(9): [PMID: 33571106]
  40. J Biol Dyn. 2016 Dec;10(1):416-56 [PMID: 27608293]
  41. Z Gesundh Wiss. 2022;30(3):583-586 [PMID: 32837842]
  42. Lancet Respir Med. 2022 Feb;10(2):e17 [PMID: 34929158]
  43. Math Biosci. 2002 Nov-Dec;180:29-48 [PMID: 12387915]
  44. R Soc Open Sci. 2018 Feb 14;5(2):172341 [PMID: 29515909]
  45. Bull Math Biol. 2021 Oct 13;83(11):116 [PMID: 34643801]
  46. Nat Med. 2020 May;26(5):672-675 [PMID: 32296168]
  47. J Appl Math Comput. 2021;66(1-2):1-20 [PMID: 32837466]
  48. Bull Math Biol. 2021 Jan 2;83(1):5 [PMID: 33387083]
  49. Math Biosci. 2017 Jun;288:52-70 [PMID: 28237666]
  50. Math Biosci. 2013 Jun;243(2):163-77 [PMID: 23524247]
  51. PLoS One. 2020 Dec 9;15(12):e0243408 [PMID: 33296417]
  52. Math Biosci Eng. 2007 Apr;4(2):287-317 [PMID: 17658928]
  53. Sci Transl Med. 2021 Jul 14;13(602): [PMID: 34158411]
  54. Front Public Health. 2022 Jan 10;9:801763 [PMID: 35083192]

MeSH Term

Female
Humans
COVID-19
SARS-CoV-2
Basic Reproduction Number
Pandemics

Word Cloud

Created with Highcharts 10.0.0variantsmodelasymptomatictransmissionCOVID-19peakinfectionpandemicviruspopulationmulti-strainstudycontrolresultsUSshowomicronmaskmandatecansubsequentmeasuresinducedSARS-CoV-2causedunprecedentedworldNewemergeddominatedpaperdeveloppre-symptomaticinfluencesdifferentstrainsstrategiesaimmitigateanalyticalnumericalrevealcompetitiveexclusionprinciplestillholdsfittingcaseviralvariantdatatransmissiblelessfatalpreviouslycirculatingbasicreproductionnumberestimated1115largerpreviousUsingexamplenon-pharmaceuticalinterventionsimplementingprevalencesignificantlylowerpostponetimeliftingaffectemergencefrequencywavesLiftingwillresultearliermuchhigherwaveCautionalsotakenliftrestrictionlargeportionremainssusceptiblemethodsobtainedemayapplieddynamicsinfectiousdiseasesusingtransmission:ApplicationAsymptomaticControlMulti-strain

Similar Articles

Cited By (3)