Saliency affects attentional capture and suppression of abrupt-onset and color singleton distractors: Evidence from event-related potential studies.

Xiaowen Chen, Bing Xu, Yanzhang Chen, Xianqing Zeng, Yue Zhang, Shimin Fu
Author Information
  1. Xiaowen Chen: Department of Psychology and Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, 510006, Guangzhou, China.
  2. Bing Xu: Department of Psychology and Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, 510006, Guangzhou, China.
  3. Yanzhang Chen: Department of Psychology and Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, 510006, Guangzhou, China.
  4. Xianqing Zeng: Department of Psychology and Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, 510006, Guangzhou, China.
  5. Yue Zhang: Department of Psychology and Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, 510006, Guangzhou, China.
  6. Shimin Fu: Department of Psychology and Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, 510006, Guangzhou, China. ORCID

Abstract

Attention is the process of selecting relevant information and suppressing irrelevant information. However, it is still controversial whether attentional capture by salient but task-irrelevant stimuli operates in a bottom-up fashion (stimulus-driven theory) or a top-down fashion (goal-driven theory) or if even salient distractors can be suppressed before capturing attention (signal suppression theory). In the present study, we investigated how saliency affects attentional capture (indexed by N2-posterior-contralateral [N2pc]) and suppression (indexed by distractor positivity [P ]) of abrupt-onset and color singleton distractors in a visual search task. Experiment 1 showed that an abrupt-onset distractor elicited both N2pc and P , while a color singleton distractor elicited only P . Moreover, the abrupt-onset distractor elicited a larger N2pc and a larger P relative to the color singleton distractor. In addition, both distractors elicited an early positive component, the positivity posterior contralateral (Ppc), which was also larger for abrupt onsets than for color singletons. Experiment 2 further demonstrated that when both the abrupt onset and color singleton were designed as targets, and thus required no attentional suppression, Ppc was elicited, but P was not. This corroborated the finding in Experiment 1 that the later P , not the early Ppc, reflected attentional suppression. Therefore, a more salient distractor demonstrates stronger early perceptual processing, can capture attention better and needs more attentional resources to be suppressed later. Based on these results, a three-stage hypothesis is proposed, in which the saliency of a distractor modulates processing at early perception, attentional capture, and suppression stages.

Keywords

References

  1. Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55(5), 485-496. https://doi.org/10.3758/BF03205306
  2. Barras, C., & Kerzel, D. (2016). Active suppression of salient-but-irrelevant stimuli does not underlie resistance to visual interference. Biological Psychology, 121(Pt A), 74-83. https://doi.org/10.1016/j.biopsycho.2016.10.004
  3. Barras, C., & Kerzel, D. (2017). Salient-but-irrelevant stimuli cause attentional capture in difficult, but attentional suppression in easy visual search. Psychophysiology, 54(12), 1826-1838. https://doi.org/10.1111/psyp.12962
  4. Beck, V. M., Luck, S. J., & Hollingworth, A. (2018). Whatever you do, don't look at the…Evaluating guidance by an exclusionary attentional template. Journal of Experimental Psychology: Human Perception and Performance, 44(4), 645-662. https://doi.org/10.1037/XHP0000485
  5. Callahan-Flintoft, C., & Wyble, B. (2017). Non-singleton colors are not attended faster than categories, but they are encoded faster: A combined approach of behavior, modeling and ERPs. Vision Research, 140, 106-119. https://doi.org/10.1016/j.visres.2017.06.013
  6. Chang, S., & Egeth, H. E. (2021). Can salient stimuli really be suppressed? Attention, Perception, & Psychophysics, 83(1), 260-269. https://doi.org/10.3758/s13414-020-02207-8
  7. Conci, M., Gramann, K., Muller, H. J., & Elliott, M. A. (2006). Electrophysiological correlates of similarity-based interference during detection of visual forms. Journal of Cognitive Neuroscience, 18(6), 880-888. https://doi.org/10.1162/jocn.2006.18.6.880
  8. Corriveau, I., Fortier-Gauthier, U., Pomerleau, V. J., McDonald, J., Dell'Acqua, R., & Jolicoeur, P. (2012). Electrophysiological evidence of multitasking impairment of attentional deployment reflects target-specific processing, not distractor inhibition. International Journal of Psychophysiology, 86(2), 152-159. https://doi.org/10.1016/j.ijpsycho.2012.06.005
  9. Cosman, J. D., & Vecera, S. P. (2013). Context-dependent control over attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 39(3), 836-848. https://doi.org/10.1037/a0030027
  10. Dell'Acqua, R., Sessa, P., Jolicoeur, P., & Robitaille, N. (2006). Spatial attention freezes during the attention blink. Psychophysiology, 43(4), 394-400. https://doi.org/10.1111/j.1469-8986.2006.00411.x
  11. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. https://doi.org/10.1016/j.jneumeth.2003.10.009
  12. Doi, H., Ueda, K., & Shinohara, K. (2009). Neural correlates of the stare-in-the-crowd effect. Neuropsychologia, 47(4), 1053-1060. https://doi.org/10.1016/j.neuropsychologia.2008.11.004
  13. Donk, M., & van Zoest, W. (2008). Effects of salience are short-lived. Psychological Science, 19(7), 733-739. https://doi.org/10.1111/j.1467-9280.2008.02149.x
  14. Drisdelle, B. L., & Eimer, M. (2021). PD components and distractor inhibition in visual search: New evidence for the signal suppression hypothesis. Psychophysiology, 58(5), 1-12. https://doi.org/10.1111/psyp.13878
  15. Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalogaphy and Clinical Neurophysilolgy, 99, 225-234. https://doi.org/10.1016/s0921-884x(96)95711-2
  16. Failing, M., & Theeuwes, J. (2020). More capture, more suppression: Distractor suppression due to statistical regularities is determined by the magnitude of attentional capture. Psychonomic Bulletin & Review, 27(1), 86-95. https://doi.org/10.3758/s13423-019-01672-z
  17. Feldmann-Wustefeld, T., & Schubo, A. (2013). Context homogeneity facilitates both distractor inhibition and target enhancement. Journal of Vision, 13(3), 11. https://doi.org/10.1167/13.3.11
  18. Folk, C. L., & Remington, R. (2010). A critical evaluation of the disengagement hypothesis. Acta Psychologica, 135(2), 103-105; discussion 133-109. https://doi.org/10.1016/j.actpsy.2010.04.012
  19. Folk, C. L., & Remington, R. W. (2015). Unexpected abrupt onsets can override a top-down set for color. Journal of Experimental Psychology. Human Perception and Performance, 41(4), 1153-1165. https://doi.org/10.1037/xhp0000084
  20. Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030-1044. https://doi.org/10.1037/0096-1523.18.4.1030
  21. Fortier-Gauthier, U., Moffat, N., Dell'Acqua, R., McDonald, J. J., & Jolicoeur, P. (2012). Contralateral cortical organization of information in visual short-term memory: Evidence from lateralized brain activity during retrieval. Neuropsychologia, 50(8), 1748-1758. https://doi.org/10.1016/j.neuropsychologia.2012.03.032
  22. Franconeri, S. L., & Simons, D. J. (2003). Moving and looming stimuli capture attention. Perception & Psychophysics, 65(7), 999-1010. https://doi.org/10.3758/BF03194829
  23. Fuchs, I., Theeuwes, J., & Ansorge, U. (2013). Exogenous attentional capture by subliminal abrupt-onset cues: Evidence from contrast-polarity independent cueing effects. Journal of Experimental Psychology-Human Perception and Performance, 39(4), 974-988. https://doi.org/10.1037/a0030419
  24. Gaspar, J. M., & McDonald, J. J. (2014). Suppression of salient objects prevents distraction in visual search. Journal of Neuroscience, 34(16), 5658-5666. https://doi.org/10.1523/JNEUROSCI.4161-13.2014
  25. Gaspelin, N., Leonard, C. J., & Luck, S. J. (2017). Suppression of overt attentional capture by salient-but-irrelevant color singletons. Attention Perception & Psychophysic, 79(1), 45-62. https://doi.org/10.3758/s13414-016-1209-1
  26. Gaspelin, N., & Luck, S. J. (2018a). Combined electrophysiological and behavioral evidence for the suppression of salient distractors. Journal of Cognitive Neuroscience, 30(9), 1265-1280. https://doi.org/10.1162/jocn_a_01279
  27. Gaspelin, N., & Luck, S. J. (2018b). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22(1), 79-92. https://doi.org/10.1016/j.tics.2017.11.001
  28. Gaspelin, N., & Luck, S. J. (2019). Inhibition as a potential resolution to the attentional capture debate. Current Opinion in Psychology, 29, 12-18. https://doi.org/10.1016/j.copsyc.2018.10.013
  29. Gaspelin, N., Ruthruff, E., & Lien, M. C. (2016). The problem of latent attentional capture: Easy visual search conceals capture by task-irrelevant abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 42(8), 1104-1120. https://doi.org/10.1037/xhp0000214
  30. Goller, F., Schoeberl, T., & Ansorge, U. (2020). Testing the top-down contingent capture of attention for abrupt-onset cues: Evidence from cue-elicited N2pc. Psychophysiology, 57(11), e13655. https://doi.org/10.1111/psyp.13655
  31. Hickey, C., Di Lollo, V., & McDonald, J. J. (2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21(4), 760-775. https://doi.org/10.1162/jocn.2009.21039
  32. Hickey, C., McDonald, J. J., & Theeuwes, J. (2006). Electrophysiological evidence of the capture of visual attention. Journal of Cognitive Neuroscience, 18(4), 604-613. https://doi.org/10.1162/jocn.2006.18.4.604
  33. Hillstrom, A. P., & Yantis, S. (1994). Visual motion and attentional capture. Perception & Psychophysics, 55(4), 399-411. https://doi.org/10.3758/bf03205298
  34. Hirai, M., & Hiraki, K. (2006). Visual search for biological motion: An event-related potential study. Neuroscience Letters, 403(3), 299-304. https://doi.org/10.1016/j.neulet.2006.05.002
  35. Holmes, A., Bradley, B. P., Kragh Nielsen, M., & Mogg, K. (2009). Attentional selectivity for emotional faces: Evidence from human electrophysiology. Psychophysiology, 46(1), 62-68. https://doi.org/10.1111/j.1469-8986.2008.00750.x
  36. Huang, W. Y., Su, Y. L., Zhen, Y. F., & Qu, Z. (2016). The role of top-down spatial attention in contingent attentional capture. Psychophysiology, 53(5), 650-662. https://doi.org/10.1111/psyp.12615
  37. Irwin, D. E., Colcombe, A. M., Kramer, A. F., & Hahn, S. (2000). Attentional and oculomotor capture by onset, luminance and color singletons. Vision Research, 40(10-12), 1443-1458. https://doi.org/10.1016/s0042-6989(00)00030-4
  38. Jannati, A., Gaspar, J. M., & McDonald, J. J. (2013). Tracking target and distractor processing in fixed-feature visual search: Evidence from human electrophysiology. Journal of Experimental Psychology. Human Perception and Performance, 39(6), 1713-1730. https://doi.org/10.1037/a0032251
  39. Jonides, J., & Yantis, S. (1988). Uniqueness of abrupt visual onset in capturing attention. Perception & Psychophysics, 43(4), 346-354. https://doi.org/10.3758/bf03208805
  40. Kadel, H., Feldmann-Wustefeld, T., & Schubo, A. (2017). Selection history alters attentional filter settings persistently and beyond top-down control. Psychophysiology, 54(5), 736-754. https://doi.org/10.1111/psyp.12830
  41. Kerzel, D., Barras, C., & Grubert, A. (2018). Suppression of salient stimuli inside the focus of attention. Biological Psychology, 139, 106-114. https://doi.org/10.1016/j.biopsycho.2018.10.010
  42. Kerzel, D., & Burra, N. (2020). Capture by context elements, not attentional suppression of distractors, explains the PD with small search displays. Journal of Cognitive Neuroscience, 32(6), 1170-1183. https://doi.org/10.1162/jocn_a_01535
  43. Kerzel, D., & Cong, S. H. (2021). Attentional guidance by irrelevant features depends on their successful encoding into working memory. Journal of Experimental Psychology. Human Perception and Performance, 47(9), 1182-1191.
  44. Kiesel, A., Miller, J., Jolicaeur, P., & Brisson, B. (2008). Measurement of ERP latency differences: A comparison of single-participant and jackknife-based scoring methods. Psychophysiology, 45(2), 250-274. https://doi.org/10.1111/j.1469-8986.2007.00618.x
  45. Kiss, M., Grubert, A., Petersen, A., & Eimer, M. (2012). Attentional capture by salient distractors during visual search is determined by temporal task demands. Journal of Cognitive Neuroscience, 24(3), 749-759. https://doi.org/10.1162/jocn_a_00127
  46. Kiss, M., Jolicaeur, P., Dell'Acqua, R., & Eimer, M. (2008). Attentional capture by visual singletons is mediated by top-down task set: New evidence from the N2pc component. Psychophysiology, 45(6), 1013-1024. https://doi.org/10.1111/j.1469-8986.2008.00700.x
  47. Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4(4), 219-227. https://doi.org/10.1007/978-94-009-3833-5_5
  48. Krummenacher, J., Grubert, A., Tollner, T., & Muller, H. J. (2014). Salience-based integration of redundant signals in visual pop-out search: Evidence from behavioral and electrophysiological measures. Journal of Vision, 14(3), 26. https://doi.org/10.1167/14.3.26
  49. Lawrence, M. (2011). Ez: Easy analysis and visualization of factorial experiments. [Computer Software Manual] (R Package Version 3.0-0).
  50. Leber, A. B., & Egeth, H. E. (2006). It's under control: Top-down search strategies can override attentional capture. Psychonomic Bulletin & Review, 13(1), 132-138. https://doi.org/10.3758/BF03193824
  51. Liao, H. I., & Yeh, S. L. (2013). Capturing attention is not that simple: Different mechanisms for stimulus-driven and contingent capture. Attention Perception & Psychophysic, 75(8), 1703-1714. https://doi.org/10.3758/s13414-013-0537-7
  52. Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240(4853), 740-749. https://doi.org/10.1126/science.3283936
  53. Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: An open-source toolbox for the analysis of event-related potentials. Frontiers in Human Neuroscience, 8, 213. https://doi.org/10.3389/fnhum.2014.00213
  54. Luck, S. J., Gaspelin, N., Folk, C. L., Remington, R. W., & Theeuwes, J. (2021). Progress toward resolving the attentional capture debate. Visual Cognition, 29(1), 1-21. https://doi.org/10.1080/13506285.2020.1848949
  55. Luck, S. J., Girelli, M., McDermott, M. T., & Ford, M. A. (1997). Bridging the gap between monkey neurophysiology and human perception: An ambiguity resolution theory of visual selective attention. Cognitive Psychology, 33, 64-87. https://doi.org/10.1006/cogp.1997.0660
  56. Luck, S. J., & Hillyard, S. A. (1994a). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 20(5), 1000-1014. https://doi.org/10.1037/0096-1523.20.5.1000
  57. Luck, S. J., & Hillyard, S. A. (1994b). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31, 291-308. https://doi.org/10.1111/j.1469-8986.1994.tb02218.x
  58. Mertes, C., & Schneider, D. (2018). Subtle distinctions: How attentional templates influence EEG parameters of cognitive control in a spatial cuing paradigm. Frontiers in Human Neuroscience, 12, 113. https://doi.org/10.3389/fnhum.2018.00113
  59. Moher, J., & Egeth, H. E. (2012). The ignoring paradox: Cueing distractor features leads first to selection, then to inhibition of to-be-ignored items. Attention Perception & Psychophysic, 74(8), 1590-1605. https://doi.org/10.3758/s13414-012-0358-0
  60. Mounts, J. R. (2000). Attentional capture by abrupt onsets and feature singletons produces inhibitory surrounds. Perception & Psychophysics, 62(7), 1485-1493. https://doi.org/10.3758/bf03212148
  61. Muhlenen, A., Rempel, M. I., & Enns, J. T. (2005). Unique temporal change is the key to attentional capture. Psychological Science, 16(12), 979-986. https://doi.org/10.1111/j.1467-9280.2005.01647.x
  62. Neo, G., & Chua, F. K. (2006). Capturing focused attention. Perception & Psychophysics, 68(8), 1286-1296. https://doi.org/10.3758/BF03193728
  63. Noesen, B., Lien, M. C., & Ruthruff, E. (2014). An electrophysiological study of attention capture by salience: Does rarity enable capture? Journal of Cognitive Psychology, 26(3), 346-371. https://doi.org/10.1080/20445911.2014.892112
  64. Olivers, C. N. (2009). What drives memory-driven attentional capture? The effects of memory type, display type, and search type. Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1275-1291. https://doi.org/10.1037/a0013896
  65. Pinto, Y., Olivers, C. N., & Theeuwes, J. (2006). When is search for a static target among dynamic distractors efficient? Journal of Experimental Psychology. Human Perception and Performance, 32(1), 59-72. https://doi.org/10.1037/0096-1523.32.1.59
  66. R Development Core Team. (2017). R: A language and environment for statistical computing. In Vienna, Austria (p. 1). Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0. http://www.R-project.org
  67. Remington, R., Johnston, J. C., & Yantis, S. (1992). Involuntary attentional capture by abrupt onsets. Perception & Psychophysics, 51(3), 279-290. https://doi.org/10.3758/BF03212254
  68. Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56(5), 356-374. https://doi.org/10.1016/j.jmp.2012.08.001
  69. Ruthruff, E., Faulks, M., Maxwell, J. W., & Gaspelin, N. (2020). Attentional dwelling and capture by color singletons. Attention, Perception, & Psychophysics, 82(6), 3048-3064. https://doi.org/10.3758/s13414-020-02054-7
  70. Ruthruff, E., Kuit, D., Maxwell, J. W., & Gaspelin, N. (2019). Can capture by abrupt onsets be suppressed? Visual Cognition, 27(3-4), 279-290. https://doi.org/10.1080/13506285.2019.1604593
  71. Sawaki, G., & Luck, S. J. (2012). A common neural mechanism for preventing and terminating the allocation of attention. Neuroscience, 32, 10725-10736. https://doi.org/10.1523/jneurosci.1864-12.2012
  72. Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention Perception & Psychophysics, 72(6), 1455-1470. https://doi.org/10.3758/app.72.6.1455
  73. Sawaki, R., & Luck, S. J. (2013). Active suppression after involuntary capture of attention. Psychonomic Bulletin & Review, 20(2), 296-301. https://doi.org/10.3758/s13423-012-0353-4
  74. Schreij, D., Los, S. A., Theeuwes, J., Enns, J. T., & Olivers, C. N. L. (2014). The interaction between stimulus-driven and goal-driven orienting as revealed by eye movements. Journal of Experimental Psychology: Human Perception and Performance, 40(1), 378-390. https://doi.org/10.1037/a0034574
  75. Schreij, D., Owens, C., & Theeuwes, J. (2008). Abrupt onsets capture attention independent of top-down control settings. Perception & Psychophysics, 70(2), 208-218. https://doi.org/10.3758/pp.70.2.208
  76. Seiss, E., Kiss, M., & Eimer, M. (2009). Does focused endogenous attention prevent attentional capture in pop-out visual search? Psychophysiology, 46(4), 703-717. https://doi.org/10.1111/j.1469-8986.2009.00827.x
  77. Serences, J. T., Shomstein, S., Leber, A. B., Golay, X., Egeth, H. E., & Yantis, S. (2005). Coordination of voluntary and stimulus-driven attentional control in human cortex. Psychological Science, 16(2), 114-122. https://doi.org/10.1111/j.0956-7976.2005.00791.x
  78. Shin, E., & Chong, S. C. (2016). Electrophysiological revelations of trial history effects in a color oddball search task. Psychophysiology, 53(12), 1878-1888. https://doi.org/10.1111/psyp.12766
  79. Sunny, M. M., & von Muhlenen, A. (2013). Attention capture by abrupt onsets: re-visiting the priority tag model. Frontiers in Psychology, 4, 958. https://doi.org/10.3389/fpsyg.2013.00958
  80. Theeuwes, J. (1991). Cross-dimensional perceptual selectivity. Perception & Psychophysics, 50(2), 184-193. https://doi.org/10.3758/BF03212219
  81. Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599-606. https://doi.org/10.3758/BF03211656
  82. Turatto, M., & Pascucci, D. (2016). Short-term and long-term plasticity in the visual-attention system: Evidence from habituation of attentional capture. Neurobiology of Learning and Memory, 130(April), 159-169. https://doi.org/10.1016/j.nlm.2016.02.010
  83. Ulrich, R., & Miller, J. (2001). Using the jackknife-based scoring method for measuring LRP onset effects in factorial designs. Psychophysiology, 38(5), 816-827. https://doi.org/10.1111/1469-8986.3850816
  84. Van Essen, D. C., & Maunsell, J. H. (1983). Hierarchical organization and functional streams in the visual cortex. Trends in Neurosciences, 6, 370-375. https://doi.org/10.1016/0166-2236(83)90167-4
  85. Wolfe, J. M. (1994). Guided search 2.0 a revised model of visual search. Psychonomic Bulletin & Review, 1(2), 202-238. https://doi.org/10.3758/BF03200774
  86. Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience, 5(6), 495-501. https://doi.org/10.1038/nrn1411
  87. Yantis, S., & Egeth, H. E. (1999). On the distinction between visual salience and stimulus-driven attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 25(3), 661-676. https://doi.org/10.1037/0096-1523.25.3.661
  88. Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 601-620. https://doi.org/10.1037/0096-1523.10.5.601

MeSH Term

Humans
Electroencephalography
Evoked Potentials
Attention
Reaction Time
Color Perception

Word Cloud

Created with Highcharts 10.0.0attentionalsuppressiondistractorcapturecolorsingletonelicitedPabrupt-onsetearlyPpcsalienttheorydistractorssaliencyExperimentN2pclargerinformationfashioncansuppressedattentionaffectsindexedpositivity1abruptlaterprocessingevent-relatedAttentionprocessselectingrelevantsuppressingirrelevantHoweverstillcontroversialwhethertask-irrelevantstimulioperatesbottom-upstimulus-driventop-downgoal-drivenevencapturingsignalpresentstudyinvestigatedN2-posterior-contralateral[N2pc][P]visualsearchtaskshowedMoreoverrelativeadditionpositivecomponentposteriorcontralateralalsoonsetssingletons2demonstratedonsetdesignedtargetsthusrequiredcorroboratedfindingreflectedThereforedemonstratesstrongerperceptualbetterneedsresourcesBasedresultsthree-stagehypothesisproposedmodulatesperceptionstagesSaliencydistractors:EvidencepotentialstudiesPDpotentials

Similar Articles

Cited By