Enhanced contrast synchrotron X-ray microtomography for describing skeleton-associated soft tissue defects in zebrafish mutants.

Jake Leyhr, Sophie Sanchez, Kathleen N Dollman, Paul Tafforeau, Tatjana Haitina
Author Information
  1. Jake Leyhr: Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
  2. Sophie Sanchez: Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
  3. Kathleen N Dollman: European Synchrotron Radiation Facility, Grenoble, France.
  4. Paul Tafforeau: European Synchrotron Radiation Facility, Grenoble, France.
  5. Tatjana Haitina: Department of Organismal Biology, Uppsala University, Uppsala, Sweden.

Abstract

Detailed histological analyses are desirable for zebrafish mutants that are models for human skeletal diseases, but traditional histological techniques are limited to two-dimensional thin sections with orientations highly dependent on careful sample preparation. On the other hand, techniques that provide three-dimensional (3D) datasets including µCT scanning are typically limited to visualizing the bony skeleton and lack histological resolution. We combined diffusible iodine-based contrast enhancement (DICE) and propagation phase-contrast synchrotron radiation micro-computed tomography (PPC-SRµCT) to image late larval and juvenile zebrafish, obtaining high-quality 3D virtual histology datasets of the mineralized skeleton and surrounding soft tissues. To demonstrate this technique, we used virtual histological thin sections and 3D segmentation to qualitatively and quantitatively compare wild-type zebrafish and mutants to characterize novel soft-tissue phenotypes in the muscles and tendons of the jaw and ligaments of the Weberian apparatus, as well as the sinus perilymphaticus associated with the inner ear. We could observe disrupted fiber organization and tendons of the adductor mandibulae and protractor hyoideus muscles associated with the jaws, and show that despite this, the overall muscle volumes appeared unaffected. Ligaments associated with the malformed Weberian ossicles were mostly absent in mutants, and the sinus perilymphaticus was severely constricted or absent as a result of the fused exoccipital and basioccipital elements. These soft-tissue phenotypes have implications for the physiology of zebrafish, and demonstrate the promise of DICE-PPC-SRµCT for histopathological investigations of bone-associated soft tissues in small-fish skeletal disease models and developmental studies more broadly.

Keywords

References

  1. Microsc Microanal. 2012 Oct;18(5):1095-105 [PMID: 23026256]
  2. PLoS Genet. 2018 Nov 2;14(11):e1007775 [PMID: 30388110]
  3. Elife. 2022 Nov 15;11: [PMID: 36377467]
  4. J Microsc. 2002 Apr;206(Pt 1):33-40 [PMID: 12000561]
  5. Sci Rep. 2015 Nov 13;5:16625 [PMID: 26564785]
  6. Dev Dyn. 2003 Nov;228(3):337-57 [PMID: 14579374]
  7. J Musculoskelet Neuronal Interact. 2017 Jun 1;17(2):1-7 [PMID: 28574406]
  8. Prog Mol Biol Transl Sci. 2021;180:69-84 [PMID: 33934838]
  9. J Biol Chem. 2016 Jun 10;291(24):12601-12611 [PMID: 27129238]
  10. J Morphol. 2010 Jul;271(7):814-25 [PMID: 20235155]
  11. BMC Dev Biol. 2008 Feb 28;8:24 [PMID: 18307809]
  12. Dev Dyn. 2003 Nov;228(3):414-23 [PMID: 14579380]
  13. Elife. 2018 Nov 26;7: [PMID: 30475205]
  14. J Exp Zool B Mol Dev Evol. 2016 Sep;326(6):352-362 [PMID: 27511594]
  15. Sci Rep. 2020 May 29;10(1):8772 [PMID: 32472032]
  16. Sci Rep. 2021 Oct 5;11(1):19781 [PMID: 34611247]
  17. Nature. 2003 May 15;423(6937):343-8 [PMID: 12748653]
  18. Sci Rep. 2022 Jan 10;12(1):342 [PMID: 35013443]
  19. Curr Top Dev Biol. 2019;133:49-90 [PMID: 30902259]
  20. Dis Model Mech. 2014 May;7(5):515-24 [PMID: 24652767]
  21. Cold Spring Harb Perspect Biol. 2013 Jan 01;5(1):a008334 [PMID: 23284041]
  22. J Anat. 2016 Jun;228(6):889-909 [PMID: 26970556]
  23. PLoS One. 2020 Mar 27;15(3):e0230578 [PMID: 32218605]
  24. Bone. 2019 Mar;120:212-218 [PMID: 30408611]
  25. Nat Commun. 2020 Nov 4;11(1):5577 [PMID: 33149150]
  26. Development. 2020 Oct 6;147(21): [PMID: 33023886]
  27. Bone. 2017 Aug;101:162-171 [PMID: 28476577]
  28. Childs Nerv Syst. 2007 Mar;23(3):269-81 [PMID: 17186250]
  29. J Imaging. 2021 Aug 04;7(8): [PMID: 34460768]
  30. Sci Rep. 2018 Nov 8;8(1):16531 [PMID: 30410001]
  31. Am J Hum Genet. 2009 Dec;85(6):916-22 [PMID: 20004766]
  32. Curr Osteoporos Rep. 2017 Oct;15(5):425-432 [PMID: 28856575]
  33. J Comp Neurol. 2001 Sep 17;438(2):173-90 [PMID: 11536187]
  34. Elife. 2016 Jul 19;5: [PMID: 27434666]
  35. Dev Dyn. 2002 Apr;223(4):427-58 [PMID: 11921334]
  36. Sci Rep. 2018 May 25;8(1):8125 [PMID: 29802254]
  37. Methods Enzymol. 2014;546:377-413 [PMID: 25398350]
  38. Zebrafish. 2016 Aug;13(4):310-6 [PMID: 27058023]
  39. Development. 2003 Feb;130(3):473-82 [PMID: 12490554]
  40. Microsc Microanal. 2014 Aug;20(4):1208-17 [PMID: 24963987]
  41. BMC Physiol. 2009 Jun 22;9:11 [PMID: 19545439]
  42. J Exp Biol. 2020 Aug 5;223(Pt 15): [PMID: 32527964]
  43. Nucleic Acids Res. 2017 Jan 4;45(D1):D758-D768 [PMID: 27899582]
  44. Front Cell Dev Biol. 2022 Sep 16;10:949184 [PMID: 36187491]
  45. Dev Dyn. 2020 Aug;249(8):998-1017 [PMID: 32243643]
  46. J Bone Miner Res. 2021 Mar;36(3):436-458 [PMID: 33484578]
  47. Comp Biochem Physiol C Toxicol Pharmacol. 2018 Jun;208:38-46 [PMID: 29157956]
  48. PLoS Comput Biol. 2023 Oct 2;19(10):e1011529 [PMID: 37782674]
  49. J Microsc. 2007 Jul;227(Pt 1):51-71 [PMID: 17635659]
  50. Front Genet. 2021 Aug 05;12:675331 [PMID: 34490030]
  51. Dev Dyn. 2007 Nov;236(11):3111-28 [PMID: 17948314]
  52. Elife. 2019 May 07;8: [PMID: 31063133]
  53. Anat Rec (Hoboken). 2014 Oct;297(10):1803-7 [PMID: 25044664]
  54. Eur J Med Genet. 2019 Jan;62(1):21-26 [PMID: 29704686]
  55. Nature. 2013 Apr 25;496(7446):498-503 [PMID: 23594743]
  56. Cell. 2021 Feb 18;184(4):899-911.e13 [PMID: 33545089]
  57. Nat Methods. 2021 Dec;18(12):1532-1541 [PMID: 34737453]
  58. Elife. 2017 Sep 08;6: [PMID: 28884682]
  59. PLoS One. 2021 Aug 19;16(8):e0255953 [PMID: 34411150]
  60. Stem Cell Res Ther. 2021 Jan 7;12(1):38 [PMID: 33413592]

MeSH Term

Animals
Humans
X-Ray Microtomography
Zebrafish
Synchrotrons
Iodine
Radiopharmaceuticals
Skeleton

Chemicals

Iodine
Radiopharmaceuticals

Word Cloud

Created with Highcharts 10.0.0zebrafishhistologicalmutants3DsynchrotronvirtualsoftWeberianassociatedmodelsskeletaltechniqueslimitedthinsectionsdatasetsskeletoncontrastpropagationphase-contrasthistologytissuesdemonstratesegmentationsoft-tissuephenotypesmusclestendonsapparatussinusperilymphaticusinnerearabsentmicrotomographyDetailedanalysesdesirablehumandiseasestraditionaltwo-dimensionalorientationshighlydependentcarefulsamplepreparationhandprovidethree-dimensionalincludingµCTscanningtypicallyvisualizingbonylackresolutioncombineddiffusibleiodine-basedenhancementDICEradiationmicro-computedtomographyPPC-SRµCTimagelatelarvaljuvenileobtaininghigh-qualitymineralizedsurroundingtechniqueusedqualitativelyquantitativelycomparewild-typecharacterizenoveljawligamentswellobservedisruptedfiberorganizationadductormandibulaeprotractorhyoideusjawsshowdespiteoverallmusclevolumesappearedunaffectedLigamentsmalformedossiclesmostlyseverelyconstrictedresultfusedexoccipitalbasioccipitalelementsimplicationsphysiologypromiseDICE-PPC-SRµCThistopathologicalinvestigationsbone-associatedsmall-fishdiseasedevelopmentalstudiesbroadlyEnhancedX-raydescribingskeleton-associatedtissuedefectsiodinestainingnkx32mutant

Similar Articles

Cited By