Near-Sensor Reservoir Computing for Gait Recognition via a Multi-Gate Electrolyte-Gated Transistor.
Xuerong Liu, Cui Sun, Zhecheng Guo, Xiangling Xia, Qian Jiang, Xiaoyu Ye, Jie Shang, Yuejun Zhang, Xiaojian Zhu, Run-Wei Li
Author Information
Xuerong Liu: CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
Cui Sun: CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
Zhecheng Guo: Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China.
Xiangling Xia: CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
Qian Jiang: CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
Xiaoyu Ye: CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
Jie Shang: CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
Yuejun Zhang: Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China.
Xiaojian Zhu: CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China. ORCID
Run-Wei Li: CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
The recent emergence of various smart wearable electronics has furnished the rapid development of human-computer interaction, medical health monitoring technologies, etc. Unfortunately, processing redundant motion and physiological data acquired by multiple wearable sensors using conventional off-site digital computers typically result in serious latency and energy consumption problems. In this work, a multi-gate electrolyte-gated transistor (EGT)-based reservoir device for efficient multi-channel near-sensor computing is reported. The EGT, exhibiting rich short-term dynamics under voltage modulation, can implement nonlinear parallel integration of the time-series signals thus extracting the temporal features such as the synchronization state and collective frequency in the inputs. The flexible EGT integrated with pressure sensors can perform on-site gait information analysis, enabling the identification of motion behaviors and Parkinson's disease. This near-sensor reservoir computing system offers a new route for rapid analysis of the motion and physiological signals with significantly improved efficiency and will lead to robust smart flexible wearable electronics.