Fitting and validation of an agent-based model for COVID-19 case forecasting in workplaces and universities.

Vignesh Kumaresan, Niranjan Balachandar, Sarah F Poole, Lance J Myers, Paul Varghese, Vindell Washington, Yugang Jia, Vivian S Lee
Author Information
  1. Vignesh Kumaresan: Verily Life Sciences, South San Francisco, California, United States of America. ORCID
  2. Niranjan Balachandar: Verily Life Sciences, South San Francisco, California, United States of America. ORCID
  3. Sarah F Poole: Verily Life Sciences, South San Francisco, California, United States of America. ORCID
  4. Lance J Myers: Verily Life Sciences, South San Francisco, California, United States of America.
  5. Paul Varghese: Verily Life Sciences, South San Francisco, California, United States of America.
  6. Vindell Washington: Verily Life Sciences, South San Francisco, California, United States of America.
  7. Yugang Jia: Verily Life Sciences, South San Francisco, California, United States of America.
  8. Vivian S Lee: Verily Life Sciences, South San Francisco, California, United States of America.

Abstract

COVID-19 forecasting models have been critical in guiding decision-making on surveillance testing, social distancing, and vaccination requirements. Beyond influencing public health policies, an accurate COVID-19 forecasting model can impact community spread by enabling employers and university leaders to adapt worksite policies and practices to contain or mitigate outbreaks. While many such models have been developed for COVID-19 forecasting at the national, state, county, or city level, only a few models have been developed for workplaces and universities. Furthermore, COVID-19 forecasting models have rarely been validated against real COVID-19 case data. Here we present the systematic parameter fitting and validation of an agent-based compartment model for the forecasting of daily COVID-19 cases in single-site workplaces and universities with real-world data. Our approaches include manual fitting, where initial model parameters are chosen based on historical data, and automated fitting, where parameters are chosen based on candidate case trajectory simulations that result in best fit to prevalence estimation data. We use a 14-day fitting window and validate our approaches on 7- and 14-day testing windows with real COVID-19 case data from one employer. Our manual and automated fitting approaches accurately predicted COVID-19 case trends and outperformed the baseline model (no parameter fitting) across multiple scenarios, including a rising case trajectory (RMSLE values: 2.627 for baseline, 0.562 for manual fitting, 0.399 for automated fitting) and a decreasing case trajectory (RMSLE values: 1.155 for baseline, 0.537 for manual fitting, 0.778 for automated fitting). Our COVID-19 case forecasting model allows decision-makers at workplaces and universities to proactively respond to case trend forecasts, mitigate outbreaks, and promote safety.

References

  1. JMIRx Med. 2021 Sep 10;2(3):e24630 [PMID: 34606524]
  2. Math Biosci. 2020 Oct;328:108436 [PMID: 32758501]
  3. Nat Med. 2020 Sep;26(9):1417-1421 [PMID: 32665655]
  4. Infect Dis Model. 2021;6:324-342 [PMID: 33437897]
  5. Infect Dis Model. 2021;6:258-272 [PMID: 33458453]
  6. BMJ. 2020 Apr 7;369:m1328 [PMID: 32265220]
  7. Lancet Digit Health. 2020 Oct;2(10):e498-e499 [PMID: 32838252]
  8. PLoS Comput Biol. 2021 Jul 12;17(7):e1009146 [PMID: 34252083]
  9. Cognit Comput. 2021 Feb 19;:1-12 [PMID: 33643473]
  10. Adv Differ Equ. 2020;2020(1):299 [PMID: 32572336]
  11. PLoS Comput Biol. 2021 Jul 26;17(7):e1009149 [PMID: 34310589]
  12. Sci Rep. 2020 Dec 4;10(1):21306 [PMID: 33277545]
  13. J Indian Inst Sci. 2020;100(4):793-807 [PMID: 33144763]
  14. medRxiv. 2020 Jun 01;: [PMID: 32577676]
  15. JAMA. 2020 May 19;323(19):1893-1894 [PMID: 32297897]
  16. Nonlinear Dyn. 2020;101(3):1667-1680 [PMID: 32836803]
  17. J Public Health Res. 2020 Jun 04;9(1):1786 [PMID: 32550223]
  18. JMIR Med Inform. 2021 Apr 6;9(4):e24192 [PMID: 33750735]
  19. Results Phys. 2021 Feb;21:103746 [PMID: 33391984]
  20. Neural Comput Appl. 2021 Feb 4;:1-11 [PMID: 33564213]
  21. BMC Med. 2020 May 25;18(1):152 [PMID: 32448247]
  22. IEEE Trans Netw Sci Eng. 2020 Sep 18;7(4):3279-3294 [PMID: 37981959]
  23. PLoS One. 2020 Nov 6;15(11):e0241951 [PMID: 33156859]
  24. J Expo Sci Environ Epidemiol. 2022 Sep;32(5):712-719 [PMID: 35095095]
  25. PLoS One. 2021 Aug 12;16(8):e0254798 [PMID: 34383766]
  26. JAMA. 2021 Jan 12;325(2):133-134 [PMID: 33331884]

MeSH Term

Humans
COVID-19
Universities
Models, Statistical
Disease Outbreaks
Forecasting
Public Policy

Word Cloud

Created with Highcharts 10.0.0COVID-19fittingcaseforecastingmodeldatamodelsworkplacesuniversitiesmanualautomated0approachestrajectorybaselinetestingpoliciesmitigateoutbreaksdevelopedrealparametervalidationagent-basedparameterschosenbased14-dayRMSLEvalues:criticalguidingdecision-makingsurveillancesocialdistancingvaccinationrequirementsBeyondinfluencingpublichealthaccuratecanimpactcommunityspreadenablingemployersuniversityleadersadaptworksitepracticescontainmanynationalstatecountycitylevelFurthermorerarelyvalidatedpresentsystematiccompartmentdailycasessingle-sitereal-worldincludeinitialhistoricalcandidatesimulationsresultbestfitprevalenceestimationusewindowvalidate7-windowsoneemployeraccuratelypredictedtrendsoutperformedacrossmultiplescenariosincludingrising2627562399decreasing1155537778allowsdecision-makersproactivelyrespondtrendforecastspromotesafetyFitting

Similar Articles

Cited By