Ebola virus-like particles reprogram cellular metabolism.

Huaqi Tang, Yasmine Abouleila, Anno Saris, Yoshihiro Shimizu, Tom H M Ottenhoff, Alireza Mashaghi
Author Information
  1. Huaqi Tang: Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
  2. Yasmine Abouleila: Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
  3. Anno Saris: Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
  4. Yoshihiro Shimizu: RIKEN Center for Biosystems Dynamics Research, Osaka, Japan.
  5. Tom H M Ottenhoff: Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
  6. Alireza Mashaghi: Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands. a.mashaghi.tabari@lacdr.leidenuniv.nl. ORCID

Abstract

Ebola virus can trigger a release of pro-inflammatory cytokines with subsequent vascular leakage and impairment of clotting finally leading to multiorgan failure and shock after entering and infecting patients. Ebola virus is known to directly target endothelial cells and macrophages, even without infecting them, through direct interactions with viral proteins. These interactions affect cellular mechanics and immune processes, which are tightly linked to other key cellular functions such as metabolism. However, research regarding metabolic activity of these cells upon viral exposure remains limited, hampering our understanding of its pathophysiology and progression. Therefore, in the present study, an untargeted cellular metabolomic approach was performed to investigate the metabolic alterations of primary human endothelial cells and M1 and M2 macrophages upon exposure to Ebola virus-like particles (VLP). The results show that Ebola VLP led to metabolic changes among endothelial, M1, and M2 cells. Differential metabolite abundance and perturbed signaling pathway analysis further identified specific metabolic features, mainly in fatty acid-, steroid-, and amino acid-related metabolism pathways for all the three cell types, in a host cell specific manner. Taken together, this work characterized for the first time the metabolic alternations of endothelial cells and two primary human macrophage subtypes after Ebola VLP exposure, and identified the potential metabolites and pathways differentially affected, highlighting the important role of those host cells in disease development and progression. KEY MESSAGES: • Ebola VLP can lead to metabolic alternations in endothelial cells and M1 and M2 macrophages. • Differential abundance of metabolites, mainly including fatty acids and sterol lipids, was observed after Ebola VLP exposure. • Multiple fatty acid-, steroid-, and amino acid-related metabolism pathways were observed perturbed.

Keywords

References

  1. Int J Mol Sci. 2020 Nov 16;21(22): [PMID: 33207699]
  2. J Virol. 2005 Aug;79(16):10442-50 [PMID: 16051836]
  3. Clin Appl Thromb Hemost. 2021 Jan-Dec;27:10760296211051764 [PMID: 34755565]
  4. PLoS Negl Trop Dis. 2017 Sep 18;11(9):e0005943 [PMID: 28922385]
  5. Allergy Asthma Immunol Res. 2014 Jan;6(1):61-5 [PMID: 24404395]
  6. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15889-94 [PMID: 14673108]
  7. J Biol Chem. 2021 Dec;297(6):101341 [PMID: 34695418]
  8. Front Immunol. 2019 Jul 09;10:1591 [PMID: 31354730]
  9. ISME J. 2016 Aug;10(8):1823-35 [PMID: 26882266]
  10. Genes Immun. 2021 Jul;22(3):125-140 [PMID: 34127827]
  11. J Biol Chem. 2007 Sep 14;282(37):27306-27314 [PMID: 17545161]
  12. Cell Host Microbe. 2017 Dec 13;22(6):817-829.e8 [PMID: 29154144]
  13. Cells. 2020 Feb 18;9(2): [PMID: 32085644]
  14. Cell Rep. 2017 May 23;19(8):1640-1653 [PMID: 28538182]
  15. Lancet. 2015 Apr 11;385(9976):1428-35 [PMID: 25534190]
  16. Oncogene. 2016 Aug 11;35(32):4155-64 [PMID: 26686092]
  17. Virol J. 2020 Nov 26;17(1):188 [PMID: 33243278]
  18. Curr Infect Dis Rep. 2015 May;17(5):480 [PMID: 25896751]
  19. Front Immunol. 2021 Jun 03;12:618501 [PMID: 34149684]
  20. Genet Med. 2008 Feb;10(2):151-6 [PMID: 18281923]
  21. Metabolites. 2019 Dec 17;9(12): [PMID: 31861212]
  22. Microb Pathog. 2021 Sep;158:105114 [PMID: 34333072]
  23. Front Immunol. 2018 Jan 29;9:38 [PMID: 29434586]
  24. J Biomed Sci. 2017 Jul 27;24(1):50 [PMID: 28750629]
  25. Front Immunol. 2019 Aug 27;10:2028 [PMID: 31507614]
  26. Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3919-3928 [PMID: 30808769]
  27. PLoS Pathog. 2014 Nov 20;10(11):e1004509 [PMID: 25412102]
  28. Nat Commun. 2015 Jul 09;6:7688 [PMID: 26158910]
  29. Cell Immunol. 2018 Feb;324:24-32 [PMID: 29195741]
  30. PLoS Negl Trop Dis. 2011 Oct;5(10):e1359 [PMID: 22028943]
  31. Comput Struct Biotechnol J. 2013 Feb 15;4:e201301005 [PMID: 24688687]
  32. Mass Spectrom Rev. 2007 Jan-Feb;26(1):108-20 [PMID: 17019703]
  33. Viruses. 2022 Jan 13;14(1): [PMID: 35062347]
  34. Risk Manag Healthc Policy. 2021 Apr 28;14:1731-1747 [PMID: 33953623]
  35. Front Immunol. 2021 Nov 18;12:781718 [PMID: 34868056]
  36. J Nutr Biochem. 2006 Nov;17(11):766-72 [PMID: 16563718]
  37. Am J Physiol Lung Cell Mol Physiol. 2019 Feb 1;316(2):L369-L384 [PMID: 30520687]
  38. Curr Opin Biotechnol. 2021 Apr;68:44-50 [PMID: 33113498]
  39. Virol J. 2017 Jul 27;14(1):144 [PMID: 28750646]
  40. Nat Rev Dis Primers. 2020 Feb 20;6(1):13 [PMID: 32080199]
  41. Pediatr Nephrol. 2021 Feb;36(2):349-359 [PMID: 32870362]
  42. J Immunol. 2008 Aug 1;181(3):2220-6 [PMID: 18641362]
  43. Cell Death Differ. 2015 Aug;22(8):1250-9 [PMID: 26024394]
  44. Curr Opin Virol. 2016 Aug;19:7-10 [PMID: 27280383]
  45. Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4560-5 [PMID: 15070757]
  46. Philos Trans A Math Phys Eng Sci. 2016 Apr 13;374(2065):20150202 [PMID: 26953178]
  47. Cell Metab. 2014 Apr 1;19(4):694-701 [PMID: 24703700]
  48. J Cell Physiol. 2018 Sep;233(9):6425-6440 [PMID: 29319160]
  49. Bioanalysis. 2017 Jan;9(1):131-148 [PMID: 27921460]
  50. Br J Pharmacol. 2006 Jun;148(3):245-54 [PMID: 16604091]
  51. J Leukoc Biol. 2006 Feb;79(2):285-93 [PMID: 16330536]
  52. PLoS Biol. 2020 Feb 10;18(2):e3000626 [PMID: 32040508]
  53. J Virol. 2005 Feb;79(4):2413-9 [PMID: 15681442]
  54. J Leukoc Biol. 2018 Oct;104(4):717-727 [PMID: 30095866]
  55. Mil Med Res. 2015 Apr 03;2:9 [PMID: 25914830]
  56. J Virol. 2015 Jan 15;89(2):1205-17 [PMID: 25392212]
  57. iScience. 2020 Jan 24;23(1):100765 [PMID: 31887664]
  58. Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E1064-73 [PMID: 26858414]
  59. Lancet. 2019 Mar 2;393(10174):936-948 [PMID: 30777297]
  60. J Cheminform. 2016 Sep 06;8(1):44 [PMID: 27606010]
  61. Curr Metabolomics. 2013;1(1):92-107 [PMID: 26078916]
  62. BMC Biochem. 2009 May 21;10:14 [PMID: 19460156]
  63. Cell Metab. 2019 May 7;29(5):1206-1216.e4 [PMID: 30827860]
  64. Environ Sci Technol. 2014 Feb 18;48(4):2097-8 [PMID: 24476540]
  65. PLoS Negl Trop Dis. 2019 Dec 11;13(12):e0007819 [PMID: 31825972]
  66. Front Mol Neurosci. 2019 May 31;12:142 [PMID: 31213981]
  67. Future Virol. 2009;4(6):621-635 [PMID: 20198110]
  68. Sci Data. 2014 Jun 10;1:140012 [PMID: 25977770]
  69. Nat Commun. 2020 Aug 14;11(1):4107 [PMID: 32796836]
  70. Nat Metab. 2021 Apr;3(4):456-468 [PMID: 33875882]
  71. Biochemistry. 2005 Dec 27;44(51):17007-15 [PMID: 16363814]
  72. PLoS One. 2020 Mar 26;15(3):e0230844 [PMID: 32214395]
  73. Nat Med. 2000 Aug;6(8):886-9 [PMID: 10932225]
  74. PLoS Negl Trop Dis. 2013 Aug 15;7(8):e2373 [PMID: 23967362]
  75. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14138-43 [PMID: 19666557]
  76. Front Immunol. 2021 Jun 17;12:694965 [PMID: 34220856]
  77. J Adv Res. 2018 Jan 03;11:57-66 [PMID: 30034876]

MeSH Term

Humans
Hemorrhagic Fever, Ebola
Ebolavirus
Endothelial Cells
Signal Transduction
Amino Acids

Chemicals

Amino Acids

Word Cloud

Created with Highcharts 10.0.0EbolacellsmetabolicendothelialmetabolismVLPcellularexposuremacrophagesM1M2fattypathwaysviruscaninfectinginteractionsviraluponprogressionprimaryhumanvirus-likeparticlesDifferentialabundanceperturbedidentifiedspecificmainlyacid-steroid-aminoacid-relatedcellhostalternationsmetabolitesobservedtriggerreleasepro-inflammatorycytokinessubsequentvascularleakageimpairmentclottingfinallyleadingmultiorganfailureshockenteringpatientsknowndirectlytargetevenwithoutdirectproteinsaffectmechanicsimmuneprocessestightlylinkedkeyfunctionsHoweverresearchregardingactivityremainslimitedhamperingunderstandingpathophysiologyThereforepresentstudyuntargetedmetabolomicapproachperformedinvestigatealterationsresultsshowledchangesamongmetabolitesignalingpathwayanalysisfeaturesthreetypesmannerTakentogetherworkcharacterizedfirsttimetwomacrophagesubtypespotentialdifferentiallyaffectedhighlightingimportantrolediseasedevelopmentKEYMESSAGES:leadincludingacidssterollipidsMultiplereprogramCellularEndothelialMacrophagepolarization

Similar Articles

Cited By