The smallest in the deepest: the enigmatic role of viruses in the deep biosphere.

Lanlan Cai, Markus G Weinbauer, Le Xie, Rui Zhang
Author Information
  1. Lanlan Cai: State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
  2. Markus G Weinbauer: Sorbonne Universités, UPMC, Université Paris 06, CNRS, Laboratoire d'Océanographie de Villefranche (LOV), Villefranche BP28, France.
  3. Le Xie: State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
  4. Rui Zhang: State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.

Abstract

It is commonly recognized that viruses control the composition, metabolism, and evolutionary trajectories of prokaryotic communities, with resulting vital feedback on ecosystem functioning and nutrient cycling in a wide range of ecosystems. Although the deep biosphere has been estimated to be the largest reservoir for viruses and their prokaryotic hosts, the biology and ecology of viruses therein remain poorly understood. The deep virosphere is an enigmatic field of study in which many critical questions are still to be answered. Is the deep virosphere simply a repository for deeply preserved, non-functioning virus particles? Or are deep viruses infectious agents that can readily infect suitable hosts and subsequently shape microbial populations and nutrient cycling? Can the cellular content released by viral lysis, and even the organic structures of virions themselves, serve as the source of bioavailable nutrients for microbial activity in the deep biosphere as in other ecosystems? In this review, we synthesize our current knowledge of viruses in the deep biosphere and seek to identify topics with the potential for substantial discoveries in the future.

Keywords

References

  1. Aquat Microb Ecol. 2009 Dec;57(3):321-341 [PMID: 27478304]
  2. ISME J. 2014 Jul;8(7):1503-9 [PMID: 24430483]
  3. Nat Microbiol. 2016 Sep 05;1:16146 [PMID: 27595198]
  4. FEMS Microbiol Ecol. 2014 Apr;88(1):60-8 [PMID: 24308555]
  5. mSystems. 2020 Mar 17;5(2): [PMID: 32184367]
  6. Commun Biol. 2021 Mar 8;4(1):307 [PMID: 33686191]
  7. ISME J. 2013 Feb;7(2):233-6 [PMID: 23038175]
  8. FEMS Microbiol Ecol. 2014 Sep;89(3):495-515 [PMID: 24754794]
  9. Nat Rev Microbiol. 2007 Oct;5(10):801-12 [PMID: 17853907]
  10. Nat Commun. 2021 Jul 30;12(1):4642 [PMID: 34330907]
  11. Trends Microbiol. 2016 Oct;24(10):821-832 [PMID: 27395772]
  12. Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):6506-6511 [PMID: 29784790]
  13. Sci Adv. 2017 Sep 06;3(9):e1602565 [PMID: 28913418]
  14. Environ Microbiol Rep. 2015 Dec;7(6):868-73 [PMID: 26109514]
  15. ISME J. 2009 Oct;3(10):1139-47 [PMID: 19516280]
  16. ISME J. 2008 Nov;2(11):1112-21 [PMID: 18719614]
  17. Nat Microbiol. 2019 Feb;4(2):352-361 [PMID: 30510171]
  18. Sci Total Environ. 2022 Mar 15;812:152477 [PMID: 34952046]
  19. Viruses. 2019 May 28;11(6): [PMID: 31141902]
  20. Nat Rev Microbiol. 2007 Oct;5(10):770-81 [PMID: 17828281]
  21. Nat Rev Microbiol. 2021 Aug;19(8):501-513 [PMID: 33762712]
  22. ISME J. 2019 Jul;13(7):1857-1864 [PMID: 30877284]
  23. Front Microbiol. 2015 Apr 22;6:349 [PMID: 25954269]
  24. Sci Rep. 2020 Jul 17;10(1):11879 [PMID: 32681144]
  25. ISME J. 2008 May;2(5):571-4 [PMID: 18288217]
  26. Science. 2011 Jul 22;333(6041):451-2 [PMID: 21778399]
  27. ISME J. 2021 Oct;15(10):3094-3110 [PMID: 33972725]
  28. ISME J. 2008 Jun;2(6):579-89 [PMID: 18521076]
  29. ISME J. 2019 Mar;13(3):618-631 [PMID: 30315316]
  30. Environ Microbiol. 2020 May;22(5):1688-1706 [PMID: 31970880]
  31. ISME J. 2013 Jan;7(1):199-209 [PMID: 22855213]
  32. Environ Microbiol. 2007 Dec;9(12):3008-18 [PMID: 17991029]
  33. Nat Rev Microbiol. 2013 Feb;11(2):83-94 [PMID: 23321532]
  34. Nat Rev Microbiol. 2022 Jan;20(1):49-62 [PMID: 34373631]
  35. Microbiome. 2019 Apr 11;7(1):58 [PMID: 30975205]
  36. Ann Rev Mar Sci. 2012;4:425-48 [PMID: 22457982]
  37. Front Microbiol. 2020 Jul 17;11:1559 [PMID: 32765451]
  38. Can J Microbiol. 2000 Feb;46(2):159-65 [PMID: 10721484]
  39. Nat Commun. 2019 Aug 6;10(1):3519 [PMID: 31388058]
  40. ISME J. 2014 Aug;8(8):1691-703 [PMID: 24671088]
  41. Front Microbiol. 2017 Jul 11;8:1199 [PMID: 28744257]
  42. Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):E2014-9 [PMID: 25848024]
  43. Cell Rep. 2021 Aug 3;36(5):109471 [PMID: 34348151]
  44. Environ Microbiol Rep. 2011 Aug;3(4):459-65 [PMID: 23761308]
  45. mBio. 2020 Apr 28;11(2): [PMID: 32345641]
  46. Nat Microbiol. 2018 Jul;3(7):754-766 [PMID: 29867096]
  47. Commun Biol. 2020 May 22;3(1):256 [PMID: 32444696]
  48. Science. 2009 Nov 6;326(5954):858-61 [PMID: 19892985]
  49. Nature. 2005 Sep 15;437(7057):356-61 [PMID: 16163346]
  50. mBio. 2017 Mar 7;8(2): [PMID: 28270584]
  51. Nature. 2008 Aug 28;454(7208):1084-7 [PMID: 18756250]
  52. Front Microbiol. 2019 Apr 29;10:878 [PMID: 31110497]
  53. Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):E757-64 [PMID: 21844365]
  54. Environ Microbiol. 2018 Aug;20(8):2974-2989 [PMID: 30051557]

Word Cloud

Created with Highcharts 10.0.0deepvirusesbiosphereprokaryoticnutrienthostsvirosphereenigmaticvirusmicrobialactivityrolecommonlyrecognizedcontrolcompositionmetabolismevolutionarytrajectoriescommunitiesresultingvitalfeedbackecosystemfunctioningcyclingwiderangeecosystemsAlthoughestimatedlargestreservoirbiologyecologythereinremainpoorlyunderstoodfieldstudymanycriticalquestionsstillansweredsimplyrepositorydeeplypreservednon-functioningparticles?infectiousagentscanreadilyinfectsuitablesubsequentlyshapepopulationscycling?Cancellularcontentreleasedvirallysisevenorganicstructuresvirionsservesourcebioavailablenutrientsecosystems?reviewsynthesizecurrentknowledgeseekidentifytopicspotentialsubstantialdiscoveriesfuturesmallestdeepest:diversityecologicalpopulationsize

Similar Articles

Cited By (2)