SigE: A master regulator of .

Riccardo Manganelli, Laura Cioetto-Mazzab��, Greta Segafreddo, Francesca Boldrin, Davide Sorze, Marta Conflitti, Agnese Serafini, Roberta Provvedi
Author Information
  1. Riccardo Manganelli: Department of Molecular Medicine, University of Padova, Padova, Italy.
  2. Laura Cioetto-Mazzab��: Department of Molecular Medicine, University of Padova, Padova, Italy.
  3. Greta Segafreddo: Department of Molecular Medicine, University of Padova, Padova, Italy.
  4. Francesca Boldrin: Department of Molecular Medicine, University of Padova, Padova, Italy.
  5. Davide Sorze: Department of Molecular Medicine, University of Padova, Padova, Italy.
  6. Marta Conflitti: Department of Molecular Medicine, University of Padova, Padova, Italy.
  7. Agnese Serafini: Department of Molecular Medicine, University of Padova, Padova, Italy.
  8. Roberta Provvedi: Department of Biology, University of Padova, Padova, Italy.

Abstract

The Extracellular function (ECF) sigma factor SigE is one of the best characterized out of the 13 sigma factors encoded in the chromosome. SigE is required for blocking phagosome maturation and full virulence in both mice and guinea pigs. Moreover, it is involved in the response to several environmental stresses as surface stress, oxidative stress, acidic pH, and phosphate starvation. Underscoring its importance in physiology, SigE is subjected to a very complex regulatory system: depending on the environmental conditions, its expression is regulated by three different sigma factors (SigA, SigE, and SigH) and a two-component system (MprAB). SigE is also regulated at the post-translational level by an anti-sigma factor (RseA) which is regulated by the intracellular redox potential and by proteolysis following phosphorylation from PknB upon surface stress. The set of genes under its direct control includes other regulators, as SigB, ClgR, and MprAB, and genes involved in surface remodeling and stabilization. Recently SigE has been shown to interact with PhoP to activate a subset of genes in conditions of acidic pH. The complex structure of its regulatory network has been suggested to result in a bistable switch leading to the development of heterogeneous bacterial populations. This hypothesis has been recently reinforced by the finding of its involvement in the development of persister cells able to survive to the killing activity of several drugs.

Keywords

References

  1. Mol Microbiol. 2002 Feb;43(3):717-31 [PMID: 11929527]
  2. Mol Microbiol. 2017 May;104(3):400-411 [PMID: 28142206]
  3. Mol Microbiol. 2018 Jun;108(6):627-640 [PMID: 29575247]
  4. PLoS One. 2014 Sep 30;9(9):e108893 [PMID: 25268826]
  5. Microbiology (Reading). 2009 Apr;155(Pt 4):1093-1102 [PMID: 19332811]
  6. Cell Rep. 2019 May 21;27(8):2468-2479.e3 [PMID: 31116989]
  7. Antimicrob Agents Chemother. 2017 Nov 22;61(12): [PMID: 28993339]
  8. Mol Microbiol. 2001 Jul;41(2):423-37 [PMID: 11489128]
  9. Sci Rep. 2019 Mar 14;9(1):4513 [PMID: 30872756]
  10. Nat Commun. 2016 Mar 31;7:11062 [PMID: 27029515]
  11. BMC Genomics. 2019 Nov 21;20(1):887 [PMID: 31752669]
  12. Microbiology (Reading). 2013 Oct;159(Pt 10):2074-2086 [PMID: 23946493]
  13. Mol Microbiol. 2010 Feb;75(3):538-42 [PMID: 20025668]
  14. Front Microbiol. 2021 Mar 31;12:642487 [PMID: 33868200]
  15. J Bacteriol. 2008 Sep;190(17):5963-71 [PMID: 18606740]
  16. BMC Bioinformatics. 2021 Nov 19;22(1):558 [PMID: 34798803]
  17. J Infect Dis. 2008 Sep 15;198(6):877-85 [PMID: 18657035]
  18. Trends Microbiol. 2019 Nov;27(11):942-953 [PMID: 31324436]
  19. Mol Microbiol. 2002 Jul;45(2):365-74 [PMID: 12123450]
  20. Microbiology (Reading). 2018 Mar;164(3):268-276 [PMID: 29493495]
  21. Mol Microbiol. 2010 Feb;75(3):592-606 [PMID: 20025669]
  22. Science. 2016 Dec 16;354(6318): [PMID: 27980159]
  23. J Infect Dis. 2009 Oct 1;200(7):1126-35 [PMID: 19686042]
  24. J Biol Chem. 2016 May 27;291(22):11787-99 [PMID: 27044743]
  25. Trends Microbiol. 2017 Mar;25(3):205-216 [PMID: 27865622]
  26. Mol Microbiol. 2003 Nov;50(3):949-59 [PMID: 14617153]
  27. J Bacteriol. 2014 Jan;196(2):391-406 [PMID: 24187094]
  28. Tuberculosis (Edinb). 2017 Sep;106:99-105 [PMID: 28802412]
  29. Trends Microbiol. 2018 Feb;26(2):145-157 [PMID: 28911979]
  30. FEMS Microbiol Rev. 2006 Nov;30(6):926-41 [PMID: 17064287]
  31. Infect Immun. 2019 Dec 17;88(1): [PMID: 31591165]
  32. Phys Biol. 2010 Aug 23;7(3):036005 [PMID: 20733247]
  33. Front Cell Infect Microbiol. 2019 Jul 30;9:272 [PMID: 31428590]
  34. Front Microbiol. 2020 Aug 26;11:1924 [PMID: 32983003]
  35. Front Microbiol. 2020 Jul 29;11:1798 [PMID: 32849409]
  36. Infect Immun. 1996 Jun;64(6):2062-9 [PMID: 8675308]
  37. Sci Adv. 2019 Mar 20;5(3):eaav2104 [PMID: 30906866]
  38. Microbes Infect. 2017 Apr - May;19(4-5):238-248 [PMID: 28153747]
  39. Infect Immun. 2004 May;72(5):3038-41 [PMID: 15102817]
  40. Mol Microbiol. 2007 Jul;65(2):261-76 [PMID: 17630969]
  41. Mol Microbiol. 2016 Oct;102(1):107-20 [PMID: 27353316]
  42. Front Microbiol. 2021 Oct 07;12:744167 [PMID: 34690990]
  43. Cell Chem Biol. 2017 Aug 17;24(8):993-1004.e4 [PMID: 28781126]
  44. Nat Rev Microbiol. 2018 Apr;16(4):202-213 [PMID: 29456241]
  45. Infect Immun. 2010 Jul;78(7):3168-76 [PMID: 20457786]
  46. Nat Commun. 2019 Mar 15;10(1):1231 [PMID: 30874556]
  47. Front Microbiol. 2016 Aug 31;7:1346 [PMID: 27630619]
  48. Antimicrob Agents Chemother. 2020 Sep 21;64(10): [PMID: 32718971]
  49. Microbiol Spectr. 2023 Mar 22;:e0294422 [PMID: 36946740]
  50. J Exp Med. 2003 Sep 1;198(5):693-704 [PMID: 12953091]
  51. Infect Immun. 2006 Jun;74(6):3296-304 [PMID: 16714557]
  52. mSystems. 2021 Feb 16;6(1): [PMID: 33594002]
  53. Appl Microbiol Biotechnol. 2020 May;104(10):4289-4302 [PMID: 32232532]
  54. J Bacteriol. 2006 Mar;188(6):2134-43 [PMID: 16513743]
  55. J Bacteriol. 2018 Jun 11;200(13): [PMID: 29686140]
  56. Infect Genet Evol. 2020 Jul;81:104204 [PMID: 31981609]
  57. Microbiol Spectr. 2014 Feb;2(1):MGM2-0007-2013 [PMID: 26082107]
  58. mBio. 2022 Feb 1;13(1):e0043921 [PMID: 35100871]

Word Cloud

Created with Highcharts 10.0.0SigEsigmastressfactorsurfaceregulatoryregulatedgenesfactorsinvolvedresponseseveralenvironmentalacidicpHcomplexconditionsMprABnetworkdevelopmentExtracellularfunctionECFonebestcharacterized13encodedchromosomerequiredblockingphagosomematurationfullvirulencemiceguineapigsMoreoverstressesoxidativephosphatestarvationUnderscoringimportancephysiologysubjectedsystem:dependingexpressionthreedifferentSigASigHtwo-componentsystemalsopost-translationallevelanti-sigmaRseAintracellularredoxpotentialproteolysisfollowingphosphorylationPknBuponsetdirectcontrolincludesregulatorsSigBClgRremodelingstabilizationRecentlyshowninteractPhoPactivatesubsetstructuresuggestedresultbistableswitchleadingheterogeneousbacterialpopulationshypothesisrecentlyreinforcedfindinginvolvementpersistercellsablesurvivekillingactivitydrugsSigE:masterregulatorMycobacteriumtuberculosispathogenesis

Similar Articles

Cited By