Ganglioside-focused Glycan Array Reveals Abnormal Anti-GD1b Auto-antibody in Plasma of Preclinical Huntington's Disease.

Tien-Wei Lin, Jung-Kai Chang, Yih-Ru Wu, Tsung-Hsien Sun, Yang-Yu Cheng, Chien-Tai Ren, Mei-Hung Pan, Jin-Lin Wu, Kuo-Hsuan Chang, Hwai-I Yang, Chiung-Mei Chen, Chung-Yi Wu, Yun-Ru Chen
Author Information
  1. Tien-Wei Lin: Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
  2. Jung-Kai Chang: Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
  3. Yih-Ru Wu: Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan.
  4. Tsung-Hsien Sun: Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
  5. Yang-Yu Cheng: Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
  6. Chien-Tai Ren: Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
  7. Mei-Hung Pan: Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
  8. Jin-Lin Wu: Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
  9. Kuo-Hsuan Chang: Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan.
  10. Hwai-I Yang: Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
  11. Chiung-Mei Chen: Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan. cmchen@adm.cgmh.org.tw.
  12. Chung-Yi Wu: Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan. cyiwu@icloud.com.
  13. Yun-Ru Chen: Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan. yrchen@gate.sinica.edu.tw. ORCID

Abstract

Huntington's disease (HD) is a progressive and devastating neurodegenerative disease marked by inheritable CAG nucleotide expansion. For offspring of HD patients carrying abnormal CAG expansion, biomarkers that predict disease onset are crucially important but still lacking. Alteration of brain ganglioside patterns has been observed in the pathology of patients carrying HD. Here, by using a novel and sensitive ganglioside-focused glycan array, we examined the potential of anti-glycan auto-antibodies for HD. In this study, we collected plasma from 97 participants including 42 control (NC), 16 pre-manifest HD (pre-HD), and 39 HD cases and measured the anti-glycan auto-antibodies by a novel ganglioside-focused glycan array. The association between plasma anti-glycan auto-antibodies and disease progression was analyzed using univariate and multivariate logistic regression. The disease-predictive capacity of anti-glycan auto-antibodies was further investigated by receiver operating characteristic (ROC) analysis. We found that anti-glycan auto-antibodies were generally higher in the pre-HD group when compared to the NC and HD groups. Specifically, anti-GD1b auto-antibody demonstrated the potential for distinguishing between pre-HD and control groups. Moreover, in combination with age and the number of CAG repeat, the level of anti-GD1b antibody showed excellent predictability with an area under the ROC curve (AUC) of 0.95 to discriminate between pre-HD carriers and HD patients. With glycan array technology, this study demonstrated abnormal auto-antibody responses that showed temporal changes from pre-HD to HD.

Keywords

References

  1. Dalrymple A, Wild EJ, Joubert R, Sathasivam K, Bjorkqvist M, Petersen A et al (2007) Proteomic profiling of plasma in Huntington’s disease reveals neuroinflammatory activation and biomarker candidates. J Proteome Res 6(7):2833–2840. https://doi.org/10.1021/pr0700753 [DOI: 10.1021/pr0700753]
  2. Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S et al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4(4):398–403. https://doi.org/10.1038/ng0893-398 [DOI: 10.1038/ng0893-398]
  3. Andre R, Scahill RI, Haider S, Tabrizi SJ (2014) Biomarker development for Huntington’s disease. Drug Discov Today 19(7):972–979. https://doi.org/10.1016/j.drudis.2014.03.002 [DOI: 10.1016/j.drudis.2014.03.002]
  4. Tabrizi SJ, Schobel S, Gantman EC, Mansbach A, Borowsky B, Konstantinova P et al (2022) A biological classification of Huntington’s disease: the Integrated Staging System. Lancet Neurol 21(7):632–644. https://doi.org/10.1016/S1474-4422(22)00120-X [DOI: 10.1016/S1474-4422(22)00120-X]
  5. Kinnunen KM, Schwarz AJ, Turner EC, Pustina D, Gantman EC, Gordon MF et al (2021) Volumetric MRI-based biomarkers in Huntington’s disease: an evidentiary review. Front Neurol 12:712555. https://doi.org/10.3389/fneur.2021.712555 [DOI: 10.3389/fneur.2021.712555]
  6. Scahill RI, Zeun P, Osborne-Crowley K, Johnson EB, Gregory S, Parker C et al (2020) Biological and clinical characteristics of gene carriers far from predicted onset in the Huntington’s disease Young Adult Study (HD-YAS): a cross-sectional analysis. Lancet Neurol 19(6):502–512. https://doi.org/10.1016/S1474-4422(20)30143-5 [DOI: 10.1016/S1474-4422(20)30143-5]
  7. Byrne LM, Schultz JL, Rodrigues FB, van der Plas E, Langbehn D, Nopoulos PC et al (2022) Neurofilament light protein as a potential blood biomarker for Huntington’s disease in children. Mov Disord 37(7):1526–1531. https://doi.org/10.1002/mds.29027 [DOI: 10.1002/mds.29027]
  8. Yu RK, Tsai YT, Ariga T (2012) Functional roles of gangliosides in neurodevelopment: an overview of recent advances. Neurochem Res 37(6):1230–1244. https://doi.org/10.1007/s11064-012-0744-y [DOI: 10.1007/s11064-012-0744-y]
  9. Desplats PA, Denny CA, Kass KE, Gilmartin T, Head SR, Sutcliffe JG et al (2007) Glycolipid and ganglioside metabolism imbalances in Huntington’s disease. Neurobiol Dis 27(3):265–277. https://doi.org/10.1016/j.nbd.2007.05.003 [DOI: 10.1016/j.nbd.2007.05.003]
  10. Yu RK (1994) Development regulation of ganglioside metabolism. Prog Brain Res 101:31–44 [DOI: 10.1016/S0079-6123(08)61938-X]
  11. Maglione V, Marchi P, Di Pardo A, Lingrell S, Horkey M, Tidmarsh E et al (2010) Impaired ganglioside metabolism in Huntington’s disease and neuroprotective role of GM1. J Neurosci 30(11):4072–4080. https://doi.org/10.1523/JNEUROSCI.6348-09.2010 [DOI: 10.1523/JNEUROSCI.6348-09.2010]
  12. Pestronk A, Cornblath DR, Ilyas AA, Baba H, Quarles RH, Griffin JW et al (1988) A treatable multifocal motor neuropathy with antibodies to GM1 ganglioside. Ann Neurol 24(1):73–78. https://doi.org/10.1002/ana.410240113 [DOI: 10.1002/ana.410240113]
  13. Baumann N, Harpin ML, Marie Y, Lemerle K, Chassande B, Bouche P et al (1998) Antiglycolipid antibodies in motor neuropathies. Ann N Y Acad Sci 845:322–329 [DOI: 10.1111/j.1749-6632.1998.tb09684.x]
  14. Sadatipour BT, Greer JM, Pender MP (1998) Increased circulating antiganglioside antibodies in primary and secondary progressive multiple sclerosis. Ann Neurol 44(6):980–983. https://doi.org/10.1002/ana.410440621 [DOI: 10.1002/ana.410440621]
  15. Hsu CH, Chu KC, Lin YS, Han JL, Peng YS, Ren CT et al (2010) Highly alpha-selective sialyl phosphate donors for efficient preparation of natural sialosides. Chemistry 16(6):1754–1760. https://doi.org/10.1002/chem.200903035 [DOI: 10.1002/chem.200903035]
  16. Chu KC, Ren CT, Lu CP, Hsu CH, Sun TH, Han JL et al (2011) Efficient and stereoselective synthesis of alpha(2-->9) oligosialic acids: from monomers to dodecamers. Angew Chem Int Ed Engl 50(40):9391–9395. https://doi.org/10.1002/anie.201101794 [DOI: 10.1002/anie.201101794]
  17. Wang CC, Huang YL, Ren CT, Lin CW, Hung JT, Yu JC et al (2008) Glycan microarray of Globo H and related structures for quantitative analysis of breast cancer. Proc Natl Acad Sci U S A 105(33):11661–11666. https://doi.org/10.1073/pnas.0804923105 [DOI: 10.1073/pnas.0804923105]
  18. Zhang Y, Long JD, Mills JA, Warner JH, Lu W, Paulsen JS (2011) Indexing disease progression at study entry with individuals at-risk for Huntington disease. Am J Med Genet B Neuropsychiatr Genet 156b(7):751–763. https://doi.org/10.1002/ajmg.b.31232 [DOI: 10.1002/ajmg.b.31232]
  19. Schmidt HB, Barreau A, Rohatgi R (2019) Phase separation-deficient TDP43 remains functional in splicing. Nat Commun 10(1):4890. https://doi.org/10.1038/s41467-019-12740-2 [DOI: 10.1038/s41467-019-12740-2]
  20. Lou YW, Wang PY, Yeh SC, Chuang PK, Li ST, Wu CY et al (2014) Stage-specific embryonic antigen-4 as a potential therapeutic target in glioblastoma multiforme and other cancers. Proc Natl Acad Sci U S A 111(7):2482–2487. https://doi.org/10.1073/pnas.1400283111 [DOI: 10.1073/pnas.1400283111]
  21. Muthana SM, Gildersleeve JC (2016) Factors affecting anti-Glycan IgG and IgM repertoires in human serum. Sci Rep 6:19509. https://doi.org/10.1038/srep19509 [DOI: 10.1038/srep19509]
  22. Hampel H, Shen Y, Walsh DM, Aisen P, Shaw LM, Zetterberg H et al (2010) Biological markers of amyloid beta-related mechanisms in Alzheimer’s disease. Exp Neurol 223(2):334–346. https://doi.org/10.1016/j.expneurol.2009.09.024 [DOI: 10.1016/j.expneurol.2009.09.024]
  23. Zeun P, Scahill RI, Tabrizi SJ, Wild EJ (2019) Fluid and imaging biomarkers for Huntington’s disease. Mol Cell Neurosci 97:67–80. https://doi.org/10.1016/j.mcn.2019.02.004 [DOI: 10.1016/j.mcn.2019.02.004]
  24. Ellrichmann G, Reick C, Saft C, Linker RA (2013) The role of the immune system in Huntington’s disease. Clin Dev Immunol 2013:541259. https://doi.org/10.1155/2013/541259 [DOI: 10.1155/2013/541259]
  25. Bjorkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N et al (2008) A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med 205(8):1869–1877. https://doi.org/10.1084/jem.20080178 [DOI: 10.1084/jem.20080178]
  26. von Essen MR, Hellem MNN, Vinther-Jensen T, Ammitzboll C, Hansen RH, Hjermind LE et al (2020) Early intrathecal T helper 17.1 cell activity in Huntington disease. Ann Neurol 87(2):246–255. https://doi.org/10.1002/ana.25647 [DOI: 10.1002/ana.25647]
  27. Lee DH, Heidecke H, Schroder A, Paul F, Wachter R, Hoffmann R et al (2014) Increase of angiotensin II type 1 receptor auto-antibodies in Huntington’s disease. Mol Neurodegener 9:49. https://doi.org/10.1186/1750-1326-9-49 [DOI: 10.1186/1750-1326-9-49]
  28. Achenbach J, Saft C, Faissner S, Ellrichmann G (2022) Positive effect of immunomodulatory therapies on disease progression in Huntington’s disease? Data from a real-world cohort. Ther Adv Neurol Disord 15:17562864221109750. https://doi.org/10.1177/17562864221109750 [DOI: 10.1177/17562864221109750]
  29. Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V (2020) Gangliosides in the brain: physiology, pathophysiology and therapeutic applications. Front Neurosci 14:572965. https://doi.org/10.3389/fnins.2020.572965 [DOI: 10.3389/fnins.2020.572965]
  30. Lehmann HC, Lopez PH, Zhang G, Ngyuen T, Zhang J, Kieseier BC et al (2007) Passive immunization with anti-ganglioside antibodies directly inhibits axon regeneration in an animal model. J Neurosci 27(1):27–34. https://doi.org/10.1523/JNEUROSCI.4017-06.2007 [DOI: 10.1523/JNEUROSCI.4017-06.2007]
  31. Hart HS, Valentin MA, Peters ST, Holler SW, Wang H, Harmon AF et al (2022) The cytoprotective role of GM1 ganglioside in Huntington disease cells. Mol Biol Rep 49(12):12253–12258. https://doi.org/10.1007/s11033-022-07830-2 [DOI: 10.1007/s11033-022-07830-2]
  32. Di Pardo A, Maglione V, Alpaugh M, Horkey M, Atwal RS, Sassone J et al (2012) Ganglioside GM1 induces phosphorylation of mutant huntingtin and restores normal motor behavior in Huntington disease mice. Proc Natl Acad Sci U S A 109(9):3528–3533. https://doi.org/10.1073/pnas.1114502109 [DOI: 10.1073/pnas.1114502109]
  33. Alpaugh M, Galleguillos D, Forero J, Morales LC, Lackey SW, Kar P et al (2017) Disease-modifying effects of ganglioside GM1 in Huntington’s disease models. EMBO Mol Med 9(11):1537–1557. https://doi.org/10.15252/emmm.201707763 [DOI: 10.15252/emmm.201707763]
  34. Sheikh KA, Zhang G (2010) An update on pathobiologic roles of anti-glycan antibodies in Guillain-Barre syndrome. F1000 Biol Rep 2:21. https://doi.org/10.3410/B2-21 [DOI: 10.3410/B2-21]
  35. Balis FM, Busch CM, Desai AV, Hibbitts E, Naranjo A, Bagatell R et al (2020) The ganglioside GD2 as a circulating tumor biomarker for neuroblastoma. Pediatr Blood Cancer 67(1):e28031. https://doi.org/10.1002/pbc.28031 [DOI: 10.1002/pbc.28031]
  36. Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX et al (2010) Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 363(14):1324–1334. https://doi.org/10.1056/NEJMoa0911123 [DOI: 10.1056/NEJMoa0911123]
  37. Drouin-Ouellet J, Sawiak SJ, Cisbani G, Lagace M, Kuan WL, Saint-Pierre M et al (2015) Cerebrovascular and blood-brain barrier impairments in Huntington’s disease: potential implications for its pathophysiology. Ann Neurol 78(2):160–177. https://doi.org/10.1002/ana.24406 [DOI: 10.1002/ana.24406]
  38. Di Pardo A, Amico E, Scalabri F, Pepe G, Castaldo S, Elifani F et al (2017) Impairment of blood-brain barrier is an early event in R6/2 mouse model of Huntington Disease. Sci Rep 7:41316. https://doi.org/10.1038/srep41316 [DOI: 10.1038/srep41316]
  39. Sciacca G, Cicchetti F (2017) Mutant huntingtin protein expression and blood-spinal cord barrier dysfunction in Huntington disease. Ann Neurol 82(6):981–994. https://doi.org/10.1002/ana.25107 [DOI: 10.1002/ana.25107]
  40. Huang YC, Wu YR, Tseng MY, Chen YC, Hsieh SY, Chen CM (2011) Increased prothrombin, apolipoprotein A-IV, and haptoglobin in the cerebrospinal fluid of patients with Huntington’s disease. PloS One 6(1):e15809. https://doi.org/10.1371/journal.pone.0015809 [DOI: 10.1371/journal.pone.0015809]
  41. Pyo H, Joe E, Jung S, Lee SH, Jou I (1999) Gangliosides activate cultured rat brain microglia. J Biol Chem 274(49):34584–34589 [DOI: 10.1074/jbc.274.49.34584]
  42. Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ et al (2007) Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain 130(Pt 7):1759–1766. https://doi.org/10.1093/brain/awm044 [DOI: 10.1093/brain/awm044]
  43. Chang KH, Wu YR, Chen YC, Chen CM (2015) Plasma inflammatory biomarkers for Huntington’s disease patients and mouse model. Brain Behav Immun 44:121–127. https://doi.org/10.1016/j.bbi.2014.09.011 [DOI: 10.1016/j.bbi.2014.09.011]
  44. Di Pardo A, Alberti S, Maglione V, Amico E, Cortes EP, Elifani F et al (2013) Changes of peripheral TGF-beta1 depend on monocytes-derived macrophages in Huntington disease. Mol Brain 6:55. https://doi.org/10.1186/1756-6606-6-55 [DOI: 10.1186/1756-6606-6-55]

MeSH Term

Humans
Huntington Disease
Neurodegenerative Diseases
Brain
Biomarkers

Chemicals

Biomarkers

Word Cloud

Created with Highcharts 10.0.0HDdiseaseanti-glycanauto-antibodiespre-HDarrayCAGpatientsglycanHuntington'sexpansioncarryingabnormalusingnovelganglioside-focusedpotentialstudyplasmacontrolNCROCgroupsanti-GD1bauto-antibodydemonstratedshowedGlycanAuto-antibodyprogressivedevastatingneurodegenerativemarkedinheritablenucleotideoffspringbiomarkerspredictonsetcruciallyimportantstilllackingAlterationbraingangliosidepatternsobservedpathologysensitiveexaminedcollected97participantsincluding4216pre-manifest39casesmeasuredassociationprogressionanalyzedunivariatemultivariatelogisticregressiondisease-predictivecapacityinvestigatedreceiveroperatingcharacteristicanalysisfoundgenerallyhighergroupcomparedSpecificallydistinguishingMoreovercombinationagenumberrepeatlevelantibodyexcellentpredictabilityareacurveAUC095discriminatecarrierstechnologyresponsestemporalchangesGanglioside-focusedArrayRevealsAbnormalAnti-GD1bPlasmaPreclinicalDiseaseGD1bGangliosidesHuntington’sPre-HD

Similar Articles

Cited By