Tsallis -Statistics in Seismology.

Leonardo Di G Sigalotti, Alejandro Ramírez-Rojas, Carlos A Vargas
Author Information
  1. Leonardo Di G Sigalotti: Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco (UAM-A), Av. San Pablo 420, Colonia Nueva el Rosario, Alcaldía Azcapotazlco, Mexico City 02128, Mexico. ORCID
  2. Alejandro Ramírez-Rojas: Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco (UAM-A), Av. San Pablo 420, Colonia Nueva el Rosario, Alcaldía Azcapotazlco, Mexico City 02128, Mexico. ORCID
  3. Carlos A Vargas: Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco (UAM-A), Av. San Pablo 420, Colonia Nueva el Rosario, Alcaldía Azcapotazlco, Mexico City 02128, Mexico. ORCID

Abstract

Non-extensive statistical mechanics (or -statistics) is based on the so-called non-additive Tsallis entropy. Since its introduction by Tsallis, in 1988, as a generalization of the Boltzmann-Gibbs equilibrium statistical mechanics, it has steadily gained ground as a suitable theory for the description of the statistical properties of non-equilibrium complex systems. Therefore, it has been applied to numerous phenomena, including real seismicity. In particular, Tsallis entropy is expected to provide a guiding principle to reveal novel aspects of complex dynamical systems with catastrophes, such as seismic events. The exploration of the existing connections between Tsallis formalism and real seismicity has been the focus of extensive research activity in the last two decades. In particular, Tsallis -statistics has provided a unified framework for the description of the collective properties of earthquakes and faults. Despite this progress, our present knowledge of the physical processes leading to the initiation of a rupture, and its subsequent growth through a fault system, remains quite limited. The aim of this paper was to provide an overview of the non-extensive interpretation of seismicity, along with the contributions of the Tsallis formalism to the statistical description of seismic events.

Keywords

References

  1. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Aug;82(2 Pt 1):021110 [PMID: 20866778]
  2. Entropy (Basel). 2018 Mar 16;20(3): [PMID: 33265290]
  3. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Mar;81(3 Pt 1):031101 [PMID: 20365691]
  4. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 2):026102 [PMID: 16605393]
  5. Proc Math Phys Eng Sci. 2016 Dec;472(2196):20160497 [PMID: 28119548]
  6. Phys Rev Lett. 2002 Jul 15;89(3):035701 [PMID: 12144402]
  7. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Feb;49(2):R956-R958 [PMID: 9961407]
  8. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Apr;71(4 Pt 2):046144 [PMID: 15903763]
  9. Entropy (Basel). 2018 Oct 02;20(10): [PMID: 33265846]
  10. Entropy (Basel). 2018 Sep 20;20(10): [PMID: 33265811]
  11. Phys Rev Lett. 2004 Jan 30;92(4):048501 [PMID: 14995415]
  12. Phys Rev Lett. 2004 Mar 12;92(10):108501 [PMID: 15089251]
  13. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 2):066123 [PMID: 16089836]
  14. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Feb;49(2):1685-9 [PMID: 9961383]
  15. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 1):041103 [PMID: 16383358]
  16. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jul;74(1 Pt 2):016104 [PMID: 16907148]
  17. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jul;66(1 Pt 1):011902 [PMID: 12241379]
  18. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Sep;68(3 Pt 1):031106 [PMID: 14524749]
  19. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 1):021123 [PMID: 17025409]
  20. Phys Rev Lett. 2004 Feb 13;92(6):065702 [PMID: 14995254]
  21. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Feb;67(2 Pt 1):021109 [PMID: 12636655]
  22. Phys Rev Lett. 2006 Dec 8;97(23):238501 [PMID: 17280253]

Word Cloud

Created with Highcharts 10.0.0Tsallisstatisticalseismicitymechanicsdescriptioncomplexsystems-statisticsentropypropertiesrealparticularprovideseismiceventsformalismearthquakesnon-extensiveNon-extensivebasedso-callednon-additiveSinceintroduction1988generalizationBoltzmann-Gibbsequilibriumsteadilygainedgroundsuitabletheorynon-equilibriumThereforeappliednumerousphenomenaincludingexpectedguidingprinciplerevealnovelaspectsdynamicalcatastrophesexplorationexistingconnectionsfocusextensiveresearchactivitylasttwodecadesprovidedunifiedframeworkcollectivefaultsDespiteprogresspresentknowledgephysicalprocessesleadinginitiationrupturesubsequentgrowthfaultsystemremainsquitelimitedaimpaperoverviewinterpretationalongcontributions-StatisticsSeismologyq-entropy

Similar Articles

Cited By