Serotypes, Antibiotic Susceptibility, Genotypic Virulence Profiles and SpaA Variants of Strains Isolated from Pigs in Poland.

Marta Dec, Dominik ��agowski, Tomasz Nowak, Dorota Pietras-O��ga, Klaudia Herman
Author Information
  1. Marta Dec: Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland. ORCID
  2. Dominik ��agowski: Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland. ORCID
  3. Tomasz Nowak: Diagnostic Veterinary Laboratory Vet-Lab Brudzew Dr. Piotr Kwieci��ski, Department of Molecular Biology, 62-720 Brudzew, Poland.
  4. Dorota Pietras-O��ga: Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-612 Lublin, Poland.
  5. Klaudia Herman: Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland. ORCID

Abstract

The aim of the study was phenotypic and genotypic characterization of strains isolated from diseased pigs in Poland and comparison of the SpaA (Surface protective antigen A) sequence of wild-type strains with the sequence of the R32E11 vaccine strain. The antibiotic susceptibility of the isolates was assessed using the broth microdilution method. Resistance genes, virulence genes, and serotype determinants were detected using PCR. The and amplicons were sequenced to determine nonsynonymous mutations. The isolates (n = 14) represented serotypes 1b (42.8%), 2 (21.4%), 5 (14.3%), 6 (7.1%), 8 (7.1%), and N (7.1%). All strains were susceptible to ��-lactams, macrolides and florfenicol. One isolate showed resistance to lincosamides and tiamulin, and most strains were resistant to tetracycline and enrofloxacin. High MIC values of gentamicin, kanamycin, neomycin, trimethoprim, trimethoprim/sulfadiazine, and rifampicin were recorded for all isolates. Phenotypic resistance was correlated with the presence of the , , , and genes. Resistance to enrofloxacin was due to a mutation in the gene. All strains contained the gene and several other genes putatively involved in pathogenesis (, , , , , , ERH_1356, , , and ) Seven variants of the SpaA protein were found in the tested strains, and a relationship between the structure of SpaA and the serotype was noted. strains occurring in pigs in Poland are diverse in terms of serotype and SpaA variant and differ antigenically from the R32E11 vaccine strain. Beta-lactam antibiotics, macrolides, or phenicols should be the first choice for treatment of swine erysipelas in Poland. However, due to the small number of tested strains, this conclusion should be approached with caution.

Keywords

References

  1. Vet Microbiol. 2010 Jan 27;140(3-4):405-17 [PMID: 19733019]
  2. Front Vet Sci. 2020 Apr 15;7:174 [PMID: 32351978]
  3. J Clin Microbiol. 2020 May 26;58(6): [PMID: 32269099]
  4. Microbes Infect. 2007 Aug;9(10):1156-66 [PMID: 17764999]
  5. Vet Sci. 2020 Jun 04;7(2): [PMID: 32512708]
  6. Vet Microbiol. 2014 Aug 6;172(1-2):216-22 [PMID: 24856134]
  7. PLoS One. 2016 Aug 01;11(8):e0159462 [PMID: 27479071]
  8. Vet Microbiol. 2018 Nov;225:101-104 [PMID: 30322520]
  9. J Glob Antimicrob Resist. 2020 Jun;21:13-15 [PMID: 32119991]
  10. J Clin Microbiol. 2004 May;42(5):2121-6 [PMID: 15131179]
  11. Microb Pathog. 2017 Dec;113:176-180 [PMID: 29038054]
  12. Infect Immun. 1996 May;64(5):1789-93 [PMID: 8613392]
  13. Am J Vet Res. 1978 Jan;39(1):187-8 [PMID: 629445]
  14. J Bacteriol. 2003 May;185(9):2739-48 [PMID: 12700253]
  15. J Clin Microbiol. 1987 Mar;25(3):536-9 [PMID: 2437149]
  16. J Antimicrob Chemother. 2014 May;69(5):1424-6 [PMID: 24379302]
  17. Pathology. 2002 Oct;34(5):462-5 [PMID: 12408347]
  18. J Vet Med Sci. 1999 Sep;61(9):1007-11 [PMID: 10535518]
  19. Animals (Basel). 2021 Sep 29;11(10): [PMID: 34679866]
  20. Antimicrob Agents Chemother. 2003 Mar;47(3):863-8 [PMID: 12604513]
  21. BMC Microbiol. 2018 Oct 29;18(1):168 [PMID: 30373569]
  22. FEMS Microbiol Lett. 1993 Nov 15;114(1):47-52 [PMID: 8293959]
  23. Antimicrob Agents Chemother. 2015 Nov;59(11):7113-6 [PMID: 26324271]
  24. Am J Vet Res. 1987 Jan;48(1):81-4 [PMID: 3826847]
  25. Wei Sheng Wu Xue Bao. 2008 Feb;48(2):207-12 [PMID: 18438003]
  26. Front Microbiol. 2022 Nov 10;13:1043529 [PMID: 36439859]
  27. J Bacteriol. 2011 Jun;193(12):2959-71 [PMID: 21478354]
  28. Vet Res. 2015 Jul 21;46:84 [PMID: 26198736]
  29. Animals (Basel). 2021 Mar 31;11(4): [PMID: 33807321]
  30. Microorganisms. 2021 Dec 17;9(12): [PMID: 34946215]
  31. Clin Vaccine Immunol. 2007 Jul;14(7):813-20 [PMID: 17475766]
  32. Vet Microbiol. 1989 Dec;21(2):165-75 [PMID: 2609500]
  33. Biology (Basel). 2022 Jul 05;11(7): [PMID: 36101391]
  34. Clin Vaccine Immunol. 2010 Oct;17(10):1605-11 [PMID: 20719987]
  35. Vaccine. 2010 Mar 16;28(13):2490-6 [PMID: 20117264]
  36. Am J Vet Res. 1981 Apr;42(4):608-14 [PMID: 6174056]
  37. J Vet Diagn Invest. 2019 May;31(3):488-491 [PMID: 30852953]
  38. Diagn Microbiol Infect Dis. 2011 Feb;69(2):123-9 [PMID: 21251554]
  39. J Microbiol Biotechnol. 2015 Feb;25(2):206-16 [PMID: 25223326]
  40. Am J Vet Res. 1984 Oct;45(10):2115-8 [PMID: 6497110]
  41. Anaerobe. 2020 Oct;65:102251 [PMID: 32781109]
  42. Biologicals. 2014 Mar;42(2):109-13 [PMID: 24405986]
  43. J Vet Med Sci. 2002 Feb;64(2):173-6 [PMID: 11913558]
  44. Epidemiol Infect. 2001 Apr;126(2):197-204 [PMID: 11349969]
  45. Microb Pathog. 2018 Jan;114:166-168 [PMID: 29196173]
  46. Microbes Infect. 2000 Jul;2(8):965-72 [PMID: 10962280]
  47. Antimicrob Agents Chemother. 2005 Nov;49(11):4798-800 [PMID: 16251336]
  48. Folia Histochem Cytobiol. 2008;46(2):225-8 [PMID: 18519242]
  49. Emerg Microbes Infect. 2015 Nov;4(11):e69 [PMID: 26975059]
  50. Front Microbiol. 2020 Mar 13;11:418 [PMID: 32231655]
  51. Clin Infect Dis. 2007 Jan 15;44(2):280-6 [PMID: 17173232]
  52. Porcine Health Manag. 2017 Mar 1;3:8 [PMID: 28405464]
  53. Int J Syst Evol Microbiol. 2022 Jul;72(7): [PMID: 35776769]
  54. J Vet Med B Infect Dis Vet Public Health. 2001 Mar;48(2):115-26 [PMID: 11315521]
  55. Antimicrob Agents Chemother. 2003 Apr;47(4):1423-6 [PMID: 12654683]
  56. Vet J. 2017 Jul;225:13-15 [PMID: 28720292]
  57. J Appl Microbiol. 2010 Oct;109(4):1227-33 [PMID: 20477888]

Word Cloud

Created with Highcharts 10.0.0strainsSpaAgenesPolandserotypepigsvaccinestrainisolates71%sequenceR32E11antibioticsusceptibilityusingResistancevirulence14macrolidesresistanceenrofloxacinduegenetestederysipelasaimstudyphenotypicgenotypiccharacterizationisolateddiseasedcomparisonSurfaceprotectiveantigenwild-typeassessedbrothmicrodilutionmethoddeterminantsdetectedPCRampliconssequenceddeterminenonsynonymousmutationsn=representedserotypes1b428%2214%53%68Nsusceptible��-lactamsflorfenicolOneisolateshowedlincosamidestiamulinresistanttetracyclineHighMICvaluesgentamicinkanamycinneomycintrimethoprimtrimethoprim/sulfadiazinerifampicinrecordedPhenotypiccorrelatedpresencemutationcontainedseveralputativelyinvolvedpathogenesisERH_1356SevenvariantsproteinfoundrelationshipstructurenotedoccurringdiversetermsvariantdifferantigenicallyBeta-lactamantibioticsphenicolsfirstchoicetreatmentswineHoweversmallnumberconclusionapproachedcautionSerotypesAntibioticSusceptibilityGenotypicVirulenceProfilesVariantsStrainsIsolatedPigs

Similar Articles

Cited By