Real-Time Nanopore Q20+ Sequencing Enables Extremely Fast and Accurate Core Genome MLST Typing and Democratizes Access to High-Resolution Bacterial Pathogen Surveillance.

Gabriel E Wagner, Johanna Dabernig-Heinz, Michaela Lipp, Adriana Cabal, Jonathan Simantzik, Matthias Kohl, Martina Scheiber, Sabine Lichtenegger, Ralf Ehricht, Eva Leitner, Werner Ruppitsch, Ivo Steinmetz
Author Information
  1. Gabriel E Wagner: Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria. ORCID
  2. Johanna Dabernig-Heinz: Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria.
  3. Michaela Lipp: Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria.
  4. Adriana Cabal: Austrian Agency for Health and Food Safety, Vienna, Austria. ORCID
  5. Jonathan Simantzik: Medical and Life Sciences Faculty, Furtwangen University, Villingen-Schwenningen, Germany.
  6. Matthias Kohl: Medical and Life Sciences Faculty, Furtwangen University, Villingen-Schwenningen, Germany.
  7. Martina Scheiber: Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria.
  8. Sabine Lichtenegger: Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria.
  9. Ralf Ehricht: InfectoGnostics Research Campus, Centre for Applied Research, Jena, Germany.
  10. Eva Leitner: Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria.
  11. Werner Ruppitsch: Austrian Agency for Health and Food Safety, Vienna, Austria. ORCID
  12. Ivo Steinmetz: Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria. ORCID

Abstract

Next-generation whole-genome sequencing is essential for high-resolution surveillance of bacterial pathogens, for example, during outbreak investigations or for source tracking and escape variant analysis. However, current global sequencing and bioinformatic bottlenecks and a long time to result with standard technologies demand new approaches. In this study, we investigated whether novel nanopore Q20+ long-read chemistry enables standardized and easily accessible high-resolution typing combined with core genome multilocus sequence typing (cgMLST). We set high requirements for discriminatory power by using the slowly evolving bacterium Bordetella pertussis as a model pathogen. Our results show that the increased raw read accuracy enables the description of epidemiological scenarios and phylogenetic linkages at the level of gold-standard short reads. The same was true for our variant analysis of vaccine antigens, resistance genes, and virulence factors, demonstrating that nanopore sequencing is a legitimate competitor in the area of next-generation sequencing (NGS)-based high-resolution bacterial typing. Furthermore, we evaluated the parameters for the fastest possible analysis of the data. By combining the optimized processing pipeline with real-time basecalling, we established a workflow that allows for highly accurate and extremely fast high-resolution typing of bacterial pathogens while sequencing is still in progress. Along with advantages such as low costs and portability, the approach suggested here might democratize modern bacterial typing, enabling more efficient infection control globally.

Keywords

References

  1. Nat Rev Microbiol. 2013 Oct;11(10):728-36 [PMID: 23979428]
  2. Proc Natl Acad Sci U S A. 2017 Dec 5;114(49):E10596-E10604 [PMID: 29158405]
  3. Mol Cancer. 2022 Mar 21;21(1):81 [PMID: 35307037]
  4. PLoS Comput Biol. 2022 Jan 24;18(1):e1009802 [PMID: 35073327]
  5. Microorganisms. 2022 Mar 14;10(3): [PMID: 35336193]
  6. Nat Rev Cancer. 2017 Apr;17(4):223-238 [PMID: 28233803]
  7. Nat Microbiol. 2017 Jan 23;2:16263 [PMID: 28112723]
  8. J Bacteriol. 2017 Mar 28;199(8): [PMID: 28167525]
  9. Genome Biol. 2018 Oct 4;19(1):153 [PMID: 30286803]
  10. Lancet Infect Dis. 2021 Sep;21(9):e281-e289 [PMID: 33587898]
  11. BMC Bioinformatics. 2010 Dec 10;11:595 [PMID: 21143983]
  12. Lancet Reg Health West Pac. 2021 Feb 05;8:100098 [PMID: 34327426]
  13. PLoS One. 2021 Oct 1;16(10):e0257521 [PMID: 34597327]
  14. Emerg Infect Dis. 2019 Jun;25(6):1196-1199 [PMID: 31107218]
  15. BMC Infect Dis. 2019 Nov 4;19(1):928 [PMID: 31684890]
  16. Biol Methods Protoc. 2020 Jul 18;5(1):bpaa014 [PMID: 33029559]
  17. Nat Methods. 2022 Jul;19(7):823-826 [PMID: 35789207]
  18. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  19. Nucleic Acids Res. 2021 Jan 8;49(D1):D660-D666 [PMID: 33068420]
  20. Cell. 2013 Sep 26;155(1):27-38 [PMID: 24074859]
  21. F1000Res. 2019 Dec 23;8:2138 [PMID: 31984131]
  22. Emerg Infect Dis. 2018 Jun;24(6):988-994 [PMID: 29774847]
  23. Genome Res. 2017 May;27(5):737-746 [PMID: 28100585]
  24. J Clin Microbiol. 2015 Sep;53(9):2869-76 [PMID: 26135865]
  25. Bioinformatics. 2016 Jul 15;32(14):2103-10 [PMID: 27153593]
  26. Nat Methods. 2022 Jul;19(7):845-853 [PMID: 35773532]
  27. Acta Paediatr. 2022 Sep;111(9):1781-1787 [PMID: 35638439]
  28. Nat Protoc. 2017 Jun;12(6):1261-1276 [PMID: 28538739]
  29. J Infect Dis. 2020 Mar 28;221(Suppl 3):S292-S307 [PMID: 31612214]
  30. Emerg Infect Dis. 2021 Mar;27(3):862-871 [PMID: 33622477]
  31. Nat Commun. 2022 Sep 6;13(1):5240 [PMID: 36068236]
  32. Nat Biotechnol. 2019 May;37(5):540-546 [PMID: 30936562]
  33. Science. 2021 Feb 12;371(6530):708-712 [PMID: 33419936]
  34. J Clin Microbiol. 2021 Jul 19;59(8):e0009321 [PMID: 33980649]
  35. Emerg Microbes Infect. 2019;8(1):1711-1720 [PMID: 31769735]
  36. N Engl J Med. 2019 Dec 26;381(26):2569-2580 [PMID: 31881145]
  37. Genome Res. 2017 May;27(5):722-736 [PMID: 28298431]
  38. Nat Biotechnol. 2021 Nov;39(11):1348-1365 [PMID: 34750572]
  39. Microb Genom. 2018 Mar;4(3): [PMID: 29543149]
  40. Nat Microbiol. 2020 Mar;5(3):455-464 [PMID: 32042129]
  41. Nat Biotechnol. 2019 Jul;37(7):783-792 [PMID: 31235920]
  42. Bioinformatics. 2018 Aug 1;34(15):2666-2669 [PMID: 29547981]
  43. Lancet Infect Dis. 2019 May;19(5):e179-e186 [PMID: 30503084]
  44. Viruses. 2021 Dec 19;13(12): [PMID: 34960817]
  45. Pathog Dis. 2015 Nov;73(8):ftv064 [PMID: 26297914]
  46. Annu Rev Genomics Hum Genet. 2016 Aug 31;17:95-115 [PMID: 27362342]
  47. Nat Commun. 2022 Jul 1;13(1):3807 [PMID: 35778384]
  48. Nat Rev Microbiol. 2020 Jun;18(6):344-359 [PMID: 32055025]
  49. BMC Med. 2020 Aug 28;18(1):233 [PMID: 32854714]
  50. Nat Biotechnol. 2019 Feb;37(2):124-126 [PMID: 30670796]
  51. Appl Environ Microbiol. 2022 Aug 9;88(15):e0078522 [PMID: 35867567]
  52. Bioinformatics. 2018 Sep 15;34(18):3094-3100 [PMID: 29750242]
  53. Nat Rev Genet. 2018 Jan;19(1):9-20 [PMID: 29129921]
  54. Sci Transl Med. 2022 Apr 27;14(642):eabn3253 [PMID: 35476597]
  55. Nature. 2022 Sep;609(7925):101-108 [PMID: 35798029]
  56. Nat Methods. 2020 Nov;17(11):1103-1110 [PMID: 33020656]
  57. Nat Comput Sci. 2021 May;1(5):332-336 [PMID: 38217213]
  58. Clin Microbiol Rev. 2016 Jul;29(3):449-86 [PMID: 27029594]

MeSH Term

Antigens, Bacterial
Bacteria
Bacterial Vaccines
Bordetella pertussis
Drug Resistance, Bacterial
Environmental Monitoring
Genome, Bacterial
Genotyping Techniques
High-Throughput Nucleotide Sequencing
Multilocus Sequence Typing
Nanopore Sequencing
Phylogeny
Reproducibility of Results
Virulence Factors

Chemicals

Antigens, Bacterial
Bacterial Vaccines
Virulence Factors

Word Cloud

Created with Highcharts 10.0.0sequencingtypingbacterialhigh-resolutionanalysissurveillancepathogensvariantnanoporeQ20+enablesBordetellapertussisnext-generationNext-generationwhole-genomeessentialexampleoutbreakinvestigationssourcetrackingescapeHowevercurrentglobalbioinformaticbottleneckslongtimeresultstandardtechnologiesdemandnewapproachesstudyinvestigatedwhethernovellong-readchemistrystandardizedeasilyaccessiblecombinedcoregenomemultilocussequencecgMLSTsethighrequirementsdiscriminatorypowerusingslowlyevolvingbacteriummodelpathogenresultsshowincreasedrawreadaccuracydescriptionepidemiologicalscenariosphylogeneticlinkageslevelgold-standardshortreadstruevaccineantigensresistancegenesvirulencefactorsdemonstratinglegitimatecompetitorareaNGS-basedFurthermoreevaluatedparametersfastestpossibledatacombiningoptimizedprocessingpipelinereal-timebasecallingestablishedworkflowallowshighlyaccurateextremelyfaststillprogressAlongadvantageslowcostsportabilityapproachsuggestedmightdemocratizemodernenablingefficientinfectioncontrolgloballyReal-TimeNanoporeSequencingEnablesExtremelyFastAccurateCoreGenomeMLSTTypingDemocratizesAccessHigh-ResolutionBacterialPathogenSurveillancemolecular

Similar Articles

Cited By (20)