When the mind's eye prevails: The Internal Dominance over External Attention (IDEA) hypothesis.

Sam Verschooren, Tobias Egner
Author Information
  1. Sam Verschooren: Center for Cognitive Neuroscience, Duke University, Durham, NC, 27708, USA. sam.verschooren@outlook.com. ORCID
  2. Tobias Egner: Center for Cognitive Neuroscience, Duke University, Durham, NC, 27708, USA.

Abstract

Throughout the 20th century, the psychological literature has considered attention as being primarily directed at the outside world. More recent theories conceive attention as also operating on internal information, and mounting evidence suggests a single, shared attentional focus between external and internal information. Such sharing implies a cognitive architecture where attention needs to be continuously shifted between prioritizing either external or internal information, but the fundamental principles underlying this attentional balancing act are currently unknown. Here, we propose and evaluate one such principle in the shape of the Internal Dominance over External Attention (IDEA) hypothesis: Contrary to the traditional view of attention as being primarily externally oriented, IDEA asserts that attention is inherently biased toward internal information. We provide a theoretical account for why such an internal attention bias may have evolved and examine findings from a wide range of literatures speaking to the balancing of external versus internal attention, including research on working memory, attention switching, visual search, mind wandering, sustained attention, and meditation. We argue that major findings in these disparate research lines can be coherently understood under IDEA. Finally, we consider tentative neurocognitive mechanisms contributing to IDEA and examine the practical implications of more deliberate control over this bias in the context of psychopathology. It is hoped that this novel hypothesis motivates cross-talk between the reviewed research lines and future empirical studies directly examining the mechanisms that steer attention either inward or outward on a moment-by-moment basis.

Keywords

References

  1. Abrahamse, E., Braem, S., Notebaert, W., & Verguts, T. (2016). Grounding cognitive control in associative learning. Psychological Bulletin, 142(7), 693–728. https://doi.org/10.1037/bul0000047 [DOI: 10.1037/bul0000047]
  2. Allport, D. A., Styles, E. A., & Hsieh, S. (1994). Shifting intentional set: Exploring the dynamic control of tasks. In Attention and performance 15: Conscious and nonconscious information processing (pp. 421–452). MIT Press.
  3. Aly, M., & Turk-Browne, N. B. (2017). How hippocampal memory shapes, and is shaped by, attention. In The hippocampus from cells to systems: Structure, connectivity, and functional contributions to memory and flexible cognition (pp. 369–403). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-50406-3_12
  4. Aly, M., & Turk-Browne, N. B. (2018). Flexible weighting of diverse inputs makes hippocampal function malleable. Neuroscience Letters, 680, 13–22. https://doi.org/10.1016/j.neulet.2017.05.063 [DOI: 10.1016/j.neulet.2017.05.063]
  5. Amir, I., & Bernstein, A. (2021). Dynamics of internal attention and internally-directed cognition: The attention-to-thoughts (A2T) model. PsyArXiv. https://doi.org/10.31234/osf.io/3qpgb
  6. Antshel K. M., Kaul, P., Biederman, J., Spencer, T. J., Hier, B. O., Hendricks, K., & Faraone, S. V. (2013). Posttraumatic stress disorder in adult attention-deficit/hyperactivity disorder: Clinical features and familial transmission. Journal of Clinical Psychiatry, 74(3), 197–204. https://doi.org/10.4088/JCP.12m07698
  7. Asplund, C. L., Todd, J. J., Snyder, A. P., & Marois, R. (2010). A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention. Nature Neuroscience, 13(4), Article 4. https://doi.org/10.1038/nn.2509
  8. Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119–126. https://doi.org/10.1016/S1364-6613(00)01593-X [DOI: 10.1016/S1364-6613(00)01593-X]
  9. Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), Psychology of learning and motivation (Vol. 8, pp. 47–89). Academic Press. https://doi.org/10.1016/S0079-7421(08)60452-1 [DOI: 10.1016/S0079-7421(08)60452-1]
  10. Bae, G.-Y., & Luck, S. J. (2018). Dissociable decoding of spatial attention and working memory from EEG oscillations and sustained potentials. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 38(2), 409–422. https://doi.org/10.1523/JNEUROSCI.2860-17.2017 [DOI: 10.1523/JNEUROSCI.2860-17.2017]
  11. Baird, B. M., Lucas, R. E., & Donnellan, M. B. (2010). Life satisfaction across the lifespan: Findings from two nationally representative panel studies. Social Indicators Research, 99(2), 183–203. https://doi.org/10.1007/s11205-010-9584-9 [DOI: 10.1007/s11205-010-9584-9]
  12. Baird, B., Smallwood, J., Mrazek, M. D., Kam, J. W. Y., Franklin, M. S., & Schooler, J. W. (2012). Inspired by distraction: Mind wandering facilitates creative incubation. Psychological Science, 23(10), 1117–1122. https://doi.org/10.1177/0956797612446024 [DOI: 10.1177/0956797612446024]
  13. Baizer, J. S., Ungerleider, L. G., & Desimone, R. (1991). Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 11(1), 168–190. [DOI: 10.1523/JNEUROSCI.11-01-00168.1991]
  14. Barinaga, M. (2003). Buddhism and neuroscience. Studying the well-trained mind. Science (New York, N.Y.), 302(5642), 44–46. https://doi.org/10.1126/science.302.5642.44 [DOI: 10.1126/science.302.5642.44]
  15. Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in adults’ working memory spans. Journal of Experimental Psychology: General, 133(1), 83–100. https://doi.org/10.1037/0096-3445.133.1.83
  16. Barrouillet, P., Portrat, S., & Camos, V. (2011). On the law relating processing to storage in working memory. Psychological Review, 118(2), 175–192. https://doi.org/10.1037/a0022324 [DOI: 10.1037/a0022324]
  17. Bishop, S. R., Lau, M., Shapiro, S., Carlson, L., Anderson, N. D., Carmody, J., Segal, Z. V., Abbey, S., Speca, M., Velting, D., & Devins, G. (2004). Mindfulness: A proposed operational definition. Clinical Psychology: Science and Practice, 11(3), 230–241. https://doi.org/10.1093/clipsy.bph077 [DOI: 10.1093/clipsy.bph077]
  18. Boksem, M. A. S., Meijman, T. F., & Lorist, M. M. (2005). Effects of mental fatigue on attention: An ERP study. Brain Research: Cognitive Brain Research, 25(1), 107–116. https://doi.org/10.1016/j.cogbrainres.2005.04.011 [DOI: 10.1016/j.cogbrainres.2005.04.011]
  19. Boksem, M. A. S., Meijman, T. F., & Lorist, M. M. (2006). Mental fatigue, motivation and action monitoring. Biological Psychology, 72(2), 123–132. https://doi.org/10.1016/j.biopsycho.2005.08.007 [DOI: 10.1016/j.biopsycho.2005.08.007]
  20. Braem, S., & Egner, T. (2018). Getting a grip on cognitive flexibility. Current Directions in Psychological Science, 27(6), 470–476. https://doi.org/10.1177/0963721418787475 [DOI: 10.1177/0963721418787475]
  21. Brown, K. W., & Ryan, R. M. (2003). The benefits of being present: Mindfulness and its role in psychological well-being. Journal of Personality and Social Psychology, 84(4), 822–848. https://doi.org/10.1037/0022-3514.84.4.822 [DOI: 10.1037/0022-3514.84.4.822]
  22. Bulley, A., Henry, J., & Suddendorf, T. (2016). Prospection and the present moment: The role of episodic foresight in intertemporal choices between immediate and delayed rewards. Review of General Psychology, 20, 29–47. https://doi.org/10.1037/gpr0000061 [DOI: 10.1037/gpr0000061]
  23. Cabeza, R., Mazuz, Y. S., Stokes, J., Kragel, J. E., Woldorff, M. G., Ciaramelli, E., Olson, I. R., & Moscovitch, M. (2011). Overlapping parietal activity in memory and perception: Evidence for the attention to memory model. Journal of Cognitive Neuroscience, 23(11), 3209–3217. https://doi.org/10.1162/jocn_a_00065 [DOI: 10.1162/jocn_a_00065]
  24. Calzolari, S., Boneva, S., & Fernández-Espejo, D. (2022). Investigating the shift between externally and internally oriented cognition: A novel task-switching paradigm. Neuroscience of Consciousness, 2022(1), niac016. https://doi.org/10.1093/nc/niac016 [DOI: 10.1093/nc/niac016]
  25. Carrasco, M., Ling, S., & Read, S. (2004). Attention alters appearance. Nature Neuroscience, 7(3), 308–313. https://doi.org/10.1038/nn1194 [DOI: 10.1038/nn1194]
  26. Chambers, R., Lo, B. C. Y., & Allen, N. B. (2008). The impact of intensive mindfulness training on attentional control, cognitive style, and affect. Cognitive Therapy and Research, 32, 303–322. https://doi.org/10.1007/s10608-007-9119-0 [DOI: 10.1007/s10608-007-9119-0]
  27. Cheadle, S., Wyart, V., Tsetsos, K., Myers, N., de Gardelle, V., Herce Castañón, S., & Summerfield, C. (2014). Adaptive gain control during human perceptual choice. Neuron, 81(6), 1429–1441. https://doi.org/10.1016/j.neuron.2014.01.020 [DOI: 10.1016/j.neuron.2014.01.020]
  28. Chiesa, A., & Serretti, A. (2009). Mindfulness-based stress reduction for stress management in healthy people: A review and meta-analysis. Journal of Alternative and Complementary Medicine (New York, N.Y.), 15(5), 593–600. https://doi.org/10.1089/acm.2008.0495 [DOI: 10.1089/acm.2008.0495]
  29. Chiu, Y.-C., & Egner, T. (2019). Cortical and subcortical contributions to context-control learning. Neuroscience and Biobehavioral Reviews, 99, 33–41. https://doi.org/10.1016/j.neubiorev.2019.01.019 [DOI: 10.1016/j.neubiorev.2019.01.019]
  30. Chun, M. M., & Johnson, M. K. (2011). Memory: Enduring traces of perceptual and reflective attention. Neuron, 17, 72(4), 520–35. https://doi.org/10.1016/j.neuron.2011.10.026
  31. Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62(1), 73–101. https://doi.org/10.1146/annurev.psych.093008.100427 [DOI: 10.1146/annurev.psych.093008.100427]
  32. Ciaramelli, E., Grady, C., & Moscovitch, M. (2008). Top-down and bottom-up attention to memory: A hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval. Neuropsychologia, 46, 1828–1851. https://doi.org/10.1016/j.neuropsychologia.2008.03.022 [DOI: 10.1016/j.neuropsychologia.2008.03.022]
  33. Cicchini, G. M., Mikellidou, K., & Burr, D. C. (2018). The functional role of serial dependence. Proceedings of the Royal Society B: Biological Sciences, 285(1890), 20181722. https://doi.org/10.1098/rspb.2018.1722 [DOI: 10.1098/rspb.2018.1722]
  34. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204. https://doi.org/10.1017/S0140525X12000477 [DOI: 10.1017/S0140525X12000477]
  35. Coelho, H. F., Canter, P. H., & Ernst, E. (2007). Mindfulness-based cognitive therapy: Evaluating current evidence and informing future research. Journal of Consulting and Clinical Psychology, 75(6), 1000–1005. https://doi.org/10.1037/0022-006X.75.6.1000 [DOI: 10.1037/0022-006X.75.6.1000]
  36. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), Article 3. https://doi.org/10.1038/nrn755 [DOI: 10.1038/nrn755]
  37. Cowan, N. (1999). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101). Cambridge University Press. https://doi.org/10.1017/CBO9781139174909.006 [DOI: 10.1017/CBO9781139174909.006]
  38. Cowan, N. (2017). The many faces of working memory and short-term storage. Psychonomic Bulletin & Review, 24(4), 1158–1170. https://doi.org/10.3758/s13423-016-1191-6 [DOI: 10.3758/s13423-016-1191-6]
  39. Cowan, N. (2019). Short-term memory based on activated long-term memory: A review in response to Norris (2017). Psychological Bulletin, 145(8), 822–847. https://doi.org/10.1037/bul0000199 [DOI: 10.1037/bul0000199]
  40. D’Esposito M., & Postle B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 3(66), 115–142. https://doi.org/10.1146/annurev-psych-010814-015031
  41. Davidson, R. J., & Kaszniak, A. W. (2015). Conceptual and methodological issues in research on mindfulness and meditation. The American Psychologist, 70(7), 581–592. https://doi.org/10.1037/a0039512 [DOI: 10.1037/a0039512]
  42. deBettencourt, M. T., Keene, P. A., Awh, E., & Vogel, E. K. (2019). Real-time triggering reveals concurrent lapses of attention and working memory. Nature Human Behaviour, 3(8), Article 8. https://doi.org/10.1038/s41562-019-0606-6
  43. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222. https://doi.org/10.1146/annurev.ne.18.030195.001205 [DOI: 10.1146/annurev.ne.18.030195.001205]
  44. Dong, D. W., & Atick, J. J. (1995). Statistics of natural time-varying images. Network: Computation in Neural Systems, 6(3), 345–358. https://doi.org/10.1088/0954-898X_6_3_003 [DOI: 10.1088/0954-898X_6_3_003]
  45. Dostoeysky, F. M. (1866). Crime and punishement (D. McDuff, Transl.). Penguin Press.
  46. Dreisbach, G., & Haider, H. (2008). That’s what task sets are for: Shielding against irrelevant information. Psychological Research, 72(4), 355–361. https://doi.org/10.1007/s00426-007-0131-5 [DOI: 10.1007/s00426-007-0131-5]
  47. Dreisbach, G., & Haider, H. (2009). How task representations guide attention: Further evidence for the shielding function of task sets. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(2), 477–486. https://doi.org/10.1037/a0014647 [DOI: 10.1037/a0014647]
  48. Dreisbach, G., & Wenke, D. (2011). The shielding function of task sets and its relaxation during task switching. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(6), 1540–1546. https://doi.org/10.1037/a0024077 [DOI: 10.1037/a0024077]
  49. Driver, J. (2001). A selective review of selective attention research from the past century. British Journal of Psychology (London, England: 1953), 92(Part 1), 53–78. [DOI: 10.1348/000712601162103]
  50. Dube, B., & Golomb, J. D. (2021). Perceptual distraction causes visual memory encoding intrusions. Psychonomic Bulletin & Review, 28(5), 1592–1600. https://doi.org/10.3758/s13423-021-01937-6 [DOI: 10.3758/s13423-021-01937-6]
  51. Egner, T. (2014). Creatures of habit (and control): A multi-level learning perspective on the modulation of congruency effects. Frontiers in Psychology, 5, 1247. https://doi.org/10.3389/fpsyg.2014.01247 [DOI: 10.3389/fpsyg.2014.01247]
  52. Esterman, M., & Rothlein, D. (2019). Models of sustained attention. Current Opinion in Psychology, 29, 174–180. https://doi.org/10.1016/j.copsyc.2019.03.005 [DOI: 10.1016/j.copsyc.2019.03.005]
  53. Fischer, J., & Whitney, D. (2014). Serial dependence in visual perception. Nature Neuroscience, 17(5), Article 5. https://doi.org/10.1038/nn.3689
  54. Fortenbaugh, F. C., DeGutis, J., & Esterman, M. (2017). Recent theoretical, neural, and clinical advances in sustained attention research. Annals of the New York Academy of Sciences, 1396(1), 70–91. https://doi.org/10.1111/nyas.13318 [DOI: 10.1111/nyas.13318]
  55. Fougnie, D., & Marois, R. (2009). Attentive tracking disrupts feature binding in visual working memory. Visual Cognition, 17(1–2), 48–66. https://doi.org/10.1080/13506280802281337
  56. Frank, M. J., Loughry, B., & O’Reilly, R. C. (2001). Interactions between frontal cortex and basal ganglia in working memory: A computational model. Cognitive, Affective, & Behavioral Neuroscience, 1(2), 137–160. https://doi.org/10.3758/CABN.1.2.137 [DOI: 10.3758/CABN.1.2.137]
  57. Friston, K. (2018). Am I self-conscious? (or does self-organization entail self-consciousness?). Frontiers in Psychology, 9, 579. https://doi.org/10.3389/fpsyg.2018.00579 [DOI: 10.3389/fpsyg.2018.00579]
  58. Friston, K. J., & Stephan, K. E. (2007). Free-energy and the brain. Synthese, 159(3), 417–458. https://doi.org/10.1007/s11229-007-9237-y [DOI: 10.1007/s11229-007-9237-y]
  59. Gallagher, G. K., & Benton, C. P. (2022). Stimulus uncertainty predicts serial dependence in orientation judgements. Journal of Vision, 22(1), 6. https://doi.org/10.1167/jov.22.1.6 [DOI: 10.1167/jov.22.1.6]
  60. Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: Bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129–135. https://doi.org/10.1016/j.tics.2011.11.014 [DOI: 10.1016/j.tics.2011.11.014]
  61. Gilbert, S. J., & Shallice, T. (2002). Task switching: A PDP model. Cognitive Psychology, 44(3), 297–337. https://doi.org/10.1006/cogp.2001.0770 [DOI: 10.1006/cogp.2001.0770]
  62. Goldstein, J. (2013). Mindfulness: A practical guide to awakening. Sounds True.
  63. Gresch, D., Boettcher, S., van Ede, F., & Nobre, A. C. (2021). Shielding working-memory representations from temporally predictable external interference. Cognition, 217, 104915. https://doi.org/10.1016/j.cognition.2021.104915
  64. Griffin, I. C., & Nobre, A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15(8), 1176–1194. https://doi.org/10.1162/089892903322598139 [DOI: 10.1162/089892903322598139]
  65. Groot, J. M., Csifcsák, G., Wientjes, S., Forstmann, B. U., & Mittner, M. (2022). Catching wandering minds with tapping fingers: Neural and behavioral insights into task-unrelated cognition. Cerebral Cortex, 32(20), 4447–4463. https://doi.org/10.1093/cercor/bhab494 [DOI: 10.1093/cercor/bhab494]
  66. Harrison, W. J., & Bays, P. M. (2018). Visual working memory is independent of the cortical spacing between memoranda. The Journal of Neuroscience, 38(12), 3116–3123. https://doi.org/10.1523/JNEUROSCI.2645-17.2017 [DOI: 10.1523/JNEUROSCI.2645-17.2017]
  67. Hasselmo, M. E., & Schnell, E. (1994). Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: Computational modeling and brain slice physiology. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 14(6), 3898–3914. [DOI: 10.1523/JNEUROSCI.14-06-03898.1994]
  68. Hautekiet, C., Verschooren, S., Langerock, N., & Vergauwe, E. (2022). Attentional switching between perception and memory: Examining asymmetrical switch costs. PsyArXiv. https://doi.org/10.31234/osf.io/tgmv3
  69. Hazy, T. E., Frank, M. J., & O’Reilly, R. C. (2006). Banishing the homunculus: Making working memory work. Neuroscience, 139(1), 105–118. https://doi.org/10.1016/j.neuroscience.2005.04.067 [DOI: 10.1016/j.neuroscience.2005.04.067]
  70. Hedge, C., Oberauer, K., & Leonards, U. (2015). Selection in spatial working memory is independent of perceptual selective attention, but they interact in a shared spatial priority map. Attention, Perception, and Psychophysics, 77(8), 2653–2668. https://doi.org/10.3758/s13414-015-0976-4
  71. Hollingworth, A., & Henderson, J. M. (2002). Accurate visual memory for previously attended objects in natural scenes. Journal of Experimental Psychology: Human Perception and Performance, 28(1), 113–136. https://doi.org/10.1037/0096-1523.28.1.113 [DOI: 10.1037/0096-1523.28.1.113]
  72. Hollingworth, A., & Luck, S. J. (2009). The role of visual working memory in the control of gaze during visual search. Attention, Perception, & Psychophysics, 71(4), 936–949. https://doi.org/10.3758/APP.71.4.936 [DOI: 10.3758/APP.71.4.936]
  73. Hollingworth, A., & Maxcey-Richard, A. M. (2013). Selective maintenance in visual working memory does not require sustained visual attention. Journal of Experimental Psychology: Human Perception and Performance, 39(4), 1047–1058. https://doi.org/10.1037/a0030238
  74. Honey, C. J., Newman, E. L., & Schapiro, A. C. (2017). Switching between internal and external modes: A multiscale learning principle. Network Neuroscience, 1(4), 339–356. https://doi.org/10.1162/NETN_a_00024 [DOI: 10.1162/NETN_a_00024]
  75. Hutchinson, J. B., Uncapher, M. R., & Wagner, A. D. (2009). Posterior parietal cortex and episodic retrieval: Convergent and divergent effects of attention and memory. Learning & Memory, 16, 343–35.
  76. Jain, S., Shapiro, S. L., Swanick, S., Roesch, S. C., Mills, P. J., Bell, I., & Schwartz, G. E. R. (2007). A randomized controlled trial of mindfulness meditation versus relaxation training: Effects on distress, positive states of mind, rumination, and distraction. Annals of Behavioral Medicine, 33(1), 11–21. https://doi.org/10.1207/s15324796abm3301_2 [DOI: 10.1207/s15324796abm3301_2]
  77. Jerde, T. A., Merriam, E. P., Riggall, A. C., Hedges, J. H., & Curtis, C. E. (2012). Prioritized maps of space in human frontoparietal cortex. Journal of Neuroscience, 32(48), 17382–17390. https://doi.org/10.1523/JNEUROSCI.3810-12.2012 [DOI: 10.1523/JNEUROSCI.3810-12.2012]
  78. Jha, A. P., Krompinger, J., & Baime, M. J. (2007). Mindfulness training modifies subsystems of attention. Cognitive, Affective, & Behavioral Neuroscience, 7(2), 109–119. https://doi.org/10.3758/cabn.7.2.109 [DOI: 10.3758/cabn.7.2.109]
  79. Jonides, J. (1980). Towards a model of the mind’s eye’s movement. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 34(2), 103–112. https://doi.org/10.1037/h0081031 [DOI: 10.1037/h0081031]
  80. Josipovic, Z. (2010). Duality and nonduality in meditation research. Consciousness and Cognition, 19(4), 1119–1121; discussion 1122–1123. https://doi.org/10.1016/j.concog.2010.03.016
  81. Kane, M. J., Brown, L. H., McVay, J. C., Silvia, P. J., Myin-Germeys, I., & Kwapil, T. R. (2007). For whom the mind wanders, and when: An experience-sampling study of working memory and executive control in daily life. Psychological Science, 18(7), 614–621. https://doi.org/10.1111/j.1467-9280.2007.01948.x [DOI: 10.1111/j.1467-9280.2007.01948.x]
  82. Keller, A. S., Leikauf, J. E., Holt-Gosselin, B., Staveland, B. R., & Williams, L. M. (2019). Paying attention to attention in depression. Translational Psychiatry, 9(1), 1–12. https://doi.org/10.1038/s41398-019-0616-1 [DOI: 10.1038/s41398-019-0616-1]
  83. Killingsworth, M. A., & Gilbert, D. T. (2010). A wandering mind is an unhappy mind. Science, 330(6006), 932–932. https://doi.org/10.1126/science.1192439
  84. Kim S. Y., Kim M. S., & Chun, M. M. (2005). Concurrent working memory load can reduce distraction. Proceedings of the National Academy of Sciences, 102(45),16524–16529. https://doi.org/10.1073/pnas.0505454102
  85. Kim, Y. W., Lee, S.-H., Choi, T. K., Suh, S. Y., Kim, B., Kim, C. M., Cho, S. J., Kim, M. J., Yook, K., Ryu, M., Song, S. K., & Yook, K.-H. (2009). Effectiveness of mindfulness-based cognitive therapy as an adjuvant to pharmacotherapy in patients with panic disorder or generalized anxiety disorder. Depression and Anxiety, 26(7), 601–606. https://doi.org/10.1002/da.20552 [DOI: 10.1002/da.20552]
  86. Kiyonaga, A., & Egner, T. (2013). Working memory as internal attention: Toward an integrative account of internal and external selection processes. Psychonomic Bulletin & Review, 20(2), 228–242. https://doi.org/10.3758/s13423-012-0359-y [DOI: 10.3758/s13423-012-0359-y]
  87. Kiyonaga, A., & Egner, T. (2014). The working memory stroop effect: When internal representations clash with external stimuli. Psychological Science, 25(8), 1619–1629. https://doi.org/10.1177/0956797614536739 [DOI: 10.1177/0956797614536739]
  88. Kiyonaga, A., Egner, T., & Soto, D. (2012). Cognitive control over working memory biases of selection. Psychonomic Bulletin & Review, 19(4), 639–646. https://doi.org/10.3758/s13423-012-0253-7 [DOI: 10.3758/s13423-012-0253-7]
  89. Kurzban, R., Duckworth, A., Kable, J. W., & Myers, J. (2013). An opportunity cost model of subjective effort and task performance. The Behavioral and Brain Sciences, 36(6), 661. https://doi.org/10.1017/S0140525X12003196 [DOI: 10.1017/S0140525X12003196]
  90. Landman, R., Spekreijse, H., & Lamme, V. A. F. (2003). Large capacity storage of integrated objects before change blindness. Vision Research, 43(2), 149–164. https://doi.org/10.1016/s0042-6989(02)00402-9 [DOI: 10.1016/s0042-6989(02)00402-9]
  91. Lanier, J., Noyes, E., & Biederman, J. (2021). Mind wandering (internal distractibility) in ADHD: A literature review. Journal of Attention Disorders, 25(6), 885–890. https://doi.org/10.1177/1087054719865781 [DOI: 10.1177/1087054719865781]
  92. Laukkonen, R. E., & Slagter, H. A. (2021). From many to (n)one: Meditation and the plasticity of the predictive mind. Neuroscience & Biobehavioral Reviews, 128, 199–217. https://doi.org/10.1016/j.neubiorev.2021.06.021 [DOI: 10.1016/j.neubiorev.2021.06.021]
  93. Lepsien, J., & Nobre, A. C. (2006). Cognitive control of attention in the human brain: Insights from orienting attention to mental representations. Brain Research, 1105(1), 20–31. https://doi.org/10.1016/j.brainres.2006.03.033 [DOI: 10.1016/j.brainres.2006.03.033]
  94. Levinson, D. B., Smallwood, J., & Davidson, R. J. (2012). The persistence of thought: Evidence for a role of working memory in the maintenance of task-unrelated thinking. Psychological Science, 23(4), 375–380. https://doi.org/10.1177/0956797611431465 [DOI: 10.1177/0956797611431465]
  95. Levinson, D. B., Stoll, E. L., Kindy, S. D., Merry, H. L., & Davidson, R. J. (2014). A mind you can count on: Validating breath counting as a behavioral measure of mindfulness. Frontiers in Psychology, 5, 1202. https://doi.org/10.3389/fpsyg.2014.01202 [DOI: 10.3389/fpsyg.2014.01202]
  96. Locke, J. (1689). An essay concerning human understanding. In P. Nidditch (Ed.). Clarendon Press, 1975.
  97. Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95(4), 492–527. https://doi.org/10.1037/0033-295X.95.4.492 [DOI: 10.1037/0033-295X.95.4.492]
  98. Lorenc, E. S., Mallett, R., & Lewis-Peacock, J. A. (2021). Distraction in visual working memory: Resistance is not futile. Trends in Cognitive Sciences, 25(3), 228–239. https://doi.org/10.1016/j.tics.2020.12.004
  99. Lorist, M. M., Boksem, M. A. S., & Ridderinkhof, K. R. (2005). Impaired cognitive control and reduced cingulate activity during mental fatigue. Brain Research: Cognitive Brain Research, 24(2), 199–205. https://doi.org/10.1016/j.cogbrainres.2005.01.018 [DOI: 10.1016/j.cogbrainres.2005.01.018]
  100. Lutz, A., Slagter, H. A., Dunne, J. D., & Davidson, R. J. (2008). Attention regulation and monitoring in meditation. Trends in Cognitive Sciences, 12(4), 163–169. https://doi.org/10.1016/j.tics.2008.01.005 [DOI: 10.1016/j.tics.2008.01.005]
  101. Lutz, A., Jha, A. P., Dunne, J. D., & Saron, C. D. (2015). Investigating the phenomenological matrix of mindfulness-related practices from a neurocognitive perspective. The American Psychologist, 70(7), 632–658. https://doi.org/10.1037/a0039585 [DOI: 10.1037/a0039585]
  102. Lutz, A., Mattout, J., & Pagnoni, G. (2019). The epistemic and pragmatic value of non-action: A predictive coding perspective on meditation. Current Opinion in Psychology, 28, 166–171. https://doi.org/10.1016/j.copsyc.2018.12.019 [DOI: 10.1016/j.copsyc.2018.12.019]
  103. MacLean, K. A., Ferrer, E., Aichele, S. R., Bridwell, D. A., Zanesco, A. P., Jacobs, T. L., King, B. G., Rosenberg, E. L., Sahdra, B. K., Shaver, P. R., Wallace, B. A., Mangun, G. R., & Saron, C. D. (2010). Intensive meditation training improves perceptual discrimination and sustained attention. Psychological Science, 21(6), 829–839. https://doi.org/10.1177/0956797610371339 [DOI: 10.1177/0956797610371339]
  104. Mayr, U., Kuhns, D., & Hubbard, J. (2014). Long-term memory and the control of attentional control. Cognitive Psychology, 72, 1–26. https://doi.org/10.1016/j.cogpsych.2014.02.001 [DOI: 10.1016/j.cogpsych.2014.02.001]
  105. Mendoza-Halliday, D., & Martinez-Trujillo, J. C. (2017). Neuronal population coding of perceived and memorized visual features in the lateral prefrontal cortex. Nature Communications, 8(1), Article 1. https://doi.org/10.1038/ncomms15471
  106. Metzinger, T. (2017). The problem of mental action. In T. Metzinger & W. Wiese (Eds.), Philosophy and predicitive processing (pp. 1–26). MIND Group.
  107. Mittner, M., Hawkins, G. E., Boekel, W., & Forstmann, B. U. (2016). A neural model of mind wandering. Trends in Cognitive Sciences, 20(8), 570–578. https://doi.org/10.1016/j.tics.2016.06.004 [DOI: 10.1016/j.tics.2016.06.004]
  108. Mole, C. (2017). Attention in early modern thought. In Routledge encyclopedia of philosophy. Taylor and Francis. https://doi.org/10.4324/9780415249126-V042-2
  109. Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140. https://doi.org/10.1016/S1364-6613(03)00028-7 [DOI: 10.1016/S1364-6613(03)00028-7]
  110. Mooneyham, B. W., & Schooler, J. W. (2013). The costs and benefits of mind-wandering: A review. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 67(1), 11–18. https://doi.org/10.1037/a0031569 [DOI: 10.1037/a0031569]
  111. Mrazek, M., Smallwood, J., & Schooler, J. (2012). Mindfulness and mind-wandering: Finding convergence through opposing constructs. Emotion (Washington, D.C.), 12, 442–448. https://doi.org/10.1037/a0026678 [DOI: 10.1037/a0026678]
  112. Müller, T., & Apps, M. A. J. (2019). Motivational fatigue: A neurocognitive framework for the impact of effortful exertion on subsequent motivation. Neuropsychologia, 123, 141–151. https://doi.org/10.1016/j.neuropsychologia.2018.04.030 [DOI: 10.1016/j.neuropsychologia.2018.04.030]
  113. Myers, N. E., Stokes, M. G., & Nobre, A. C. (2017). Prioritizing information during working memory: Beyond sustained internal attention. Trends in Cognitive Sciences, 21(6), 449–461. https://doi.org/10.1016/j.tics.2017.03.010 [DOI: 10.1016/j.tics.2017.03.010]
  114. Narhi-Martinez, W., Dube, B., & Golomb, J. D. (2023). Attention as a multi-level system of weights and balances. WIREs Cognitive Science, 14(1), e1633. https://doi.org/10.1002/wcs.1633 [DOI: 10.1002/wcs.1633]
  115. Nee, D. E., & Jonides, J. (2009). Common and distinct neural correlates of perceptual and memorial selection. NeuroImage, 45(3), 963–975. https://doi.org/10.1016/j.neuroimage.2009.01.005 [DOI: 10.1016/j.neuroimage.2009.01.005]
  116. Nobre, A. C., & Kastner, S. (Eds.). (2014). The Oxford handbook of attention. Oxford University Press.
  117. Nolen-Hoeksema, S., Wisco, B. E., & Lyubomirsky, S. (2008). Rethinking rumination. Perspectives on Psychological Science, 3(5), 400–424. https://doi.org/10.1111/j.1745-6924.2008.00088.x [DOI: 10.1111/j.1745-6924.2008.00088.x]
  118. Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 411–421. https://doi.org/10.1037/0278-7393.28.3.411 [DOI: 10.1037/0278-7393.28.3.411]
  119. Oberauer, K. (2009). Design for a working memory. In Psychology of Learning and Motivation (Vol. 51, pp. 45–100). Elsevier. https://doi.org/10.1016/S0079-7421(09)51002-X
  120. Oberauer, K. (2019). Working memory and attention—a conceptual analysis and review. Journal of Cognition, 2(1), 36. https://doi.org/10.5334/joc.58 [DOI: 10.5334/joc.58]
  121. Oettingen, G., & Schwörer, B. (2013). Mind wandering via mental contrasting as a tool for behavior change. Frontiers in Psychology, 4, 562. https://doi.org/10.3389/fpsyg.2013.00562 [DOI: 10.3389/fpsyg.2013.00562]
  122. Olivers, C. N. L., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Sciences, 15(7), 327–334. https://doi.org/10.1016/j.tics.2011.05.004 [DOI: 10.1016/j.tics.2011.05.004]
  123. Pagnoni, G. (2019). The contemplative exercise through the lenses of predictive processing: A promising approach. Progress in Brain Research, 244, 299–322. https://doi.org/10.1016/bs.pbr.2018.10.022 [DOI: 10.1016/bs.pbr.2018.10.022]
  124. Pan, Y., Han, Y., & Zuo, W. (2019). The color-word Stroop effect driven by working memory maintenance. Attention, Perception, & Psychophysics, 81(8), 2722–2731. https://doi.org/10.3758/s13414-019-01780-x [DOI: 10.3758/s13414-019-01780-x]
  125. Panichello, M. F., & Buschman, T. J. (2021). Shared mechanisms underlie the control of working memory and attention. Nature, 1–5. https://doi.org/10.1038/s41586-021-03390-w
  126. Pascucci, D., Tanrikulu, Ö. D., Ozkirli, A., Houborg, C., Ceylan, G., Zerr, P., Rafiei, M., & Kristjánsson, Á. (2023). Serial dependence in visual perception: A review. Journal of Vision, 23(1), 9. https://doi.org/10.1167/jov.23.1.9 [DOI: 10.1167/jov.23.1.9]
  127. Pessoa, F. (1966). The book of disquiet (R. Zenith, Transl.). In R. Zenith (Ed). Penguin Press.
  128. Plessen, K. J., Bansal, R., Zhu, H., Whiteman, R., Amat, J., Quackenbush, G. A., Martin, L., Durkin, K., Blair, C., Royal, J., Hugdahl, K., & Peterson, B. S. (2006). Hippocampus and amygdala morphology in attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 63(7), 795–807. https://doi.org/10.1001/archpsyc.63.7.795
  129. Poskanzer, C., & Aly, M. (2022). Switching between external and internal attention in hippocampal networks. bioRxiv. https://doi.org/10.1101/2022.12.20.521285
  130. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25. https://doi.org/10.1080/00335558008248231 [DOI: 10.1080/00335558008248231]
  131. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42. https://doi.org/10.1146/annurev.ne.13.030190.000325 [DOI: 10.1146/annurev.ne.13.030190.000325]
  132. Postle, B. R. (2006). Working memory as an emergent property of the mind and brain. Neuroscience, 139(1), 23–38. https://doi.org/10.1016/j.neuroscience.2005.06.005 [DOI: 10.1016/j.neuroscience.2005.06.005]
  133. Rerko, L., Souza, A. S., & Oberauer, K. (2014). Retro-cue benefits in working memory without sustained focal attention. Memory & Cognition. https://doi.org/10.3758/s13421-013-0392-8
  134. Reynolds, J. H., & Heeger, D. J. (2009). The normalization model of attention. Neuron, 61(2), 168–185. https://doi.org/10.1016/j.neuron.2009.01.002 [DOI: 10.1016/j.neuron.2009.01.002]
  135. Robison, M. K., Gath, K. I., & Unsworth, N. (2017). The neurotic wandering mind: An individual differences investigation of neuroticism, mind-wandering, and executive control. Quarterly Journal of Experimental Psychology, 70(4), 649–663. https://doi.org/10.1080/17470218.2016.1145706 [DOI: 10.1080/17470218.2016.1145706]
  136. Ruby, F. J. M., Smallwood, J., Engen, H., & Singer, T. (2013). How self-generated thought shapes mood—The relation between mind-wandering and mood depends on the socio-temporal content of thoughts. PLOS ONE, 8(10), Article e77554. https://doi.org/10.1371/journal.pone.0077554
  137. Ruiz, N. A., Thieu, M. K., & Aly, M. (2021). Cholinergic modulation of hippocampally mediated attention and perception. Behavioral Neuroscience, 135(1), 20. [DOI: 10.1037/bne0000405]
  138. Schooler, J. W. (2002). Re-representing consciousness: Dissociations between experience and meta-consciousness. Trends in Cognitive Sciences, 6(8), 339–344. https://doi.org/10.1016/s1364-6613(02)01949-6 [DOI: 10.1016/s1364-6613(02)01949-6]
  139. Schooler, J. W., Reichle, E. D., & Halpern, D. V. (2004). Zoning out while reading: Evidence for dissociations between experience and metaconsciousness. In D. T. Levin (Ed.), Thinking and seeing: Visual metacognition in adults and children (pp. 203–226). MIT Press.
  140. Seli, P., Carriere, J. S., Levene, M., & Smilek, D. (2013). How few and far between? Examining the effects of probe rate on self-reported mind wandering. Front in Psychology, 4, 430. https://doi.org/10.3389/fpsyg.2013.00430
  141. Seli, P., Risko, E. F., Smilek, D., & Schacter, D. L. (2016). Mind-wandering with and without intention. Trends in Cognitive Sciences, 20(8), 605–617. https://doi.org/10.1016/j.tics.2016.05.010 [DOI: 10.1016/j.tics.2016.05.010]
  142. Seli, P., Kane, M. J., Smallwood, J., Schacter, D. L., Maillet, D., Schooler, J. W., & Smilek, D. (2018). Mind-wandering as a natural kind: A family-resemblances view. Trends in Cognitive Sciences, 22(6), 479–490. https://doi.org/10.1016/j.tics.2018.03.010 [DOI: 10.1016/j.tics.2018.03.010]
  143. Servais, A., Hurter, C., & Barbeau, E. J. (2022). Attentional switch to memory: An early and critical phase of the cognitive cascade allowing autobiographical memory retrieval. PsyArXiv. https://doi.org/10.31234/osf.io/z32qe
  144. Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T. L., Cohen, J. D., & Botvinick, M. M. (2017). Toward a rational and mechanistic account of mental effort. Annual Review of Neuroscience, 40(1), 99–124. https://doi.org/10.1146/annurev-neuro-072116-031526 [DOI: 10.1146/annurev-neuro-072116-031526]
  145. Slagter, H. A., Lutz, A., Greischar, L. L., Francis, A. D., Nieuwenhuis, S., Davis, J. M., & Davidson, R. J. (2007). Mental training affects distribution of limited brain resources. PLOS Biology, 5(6), Article e138. https://doi.org/10.1371/journal.pbio.0050138
  146. Smallwood, J., & Schooler, J. W. (2006). The restless mind. Psychological Bulletin, 132(6), 946–958. https://doi.org/10.1037/0033-2909.132.6.946 [DOI: 10.1037/0033-2909.132.6.946]
  147. Smallwood, J., & Schooler, J. (2014). The science of mind wandering: Empirically navigating the stream of consciousness. Annual Review of Psychology, 66, 487–518. https://doi.org/10.1146/annurev-psych-010814-015331 [DOI: 10.1146/annurev-psych-010814-015331]
  148. Smallwood, J., Brown, K., Tipper, C., Giesbrecht, B., Franklin, M., Mrazek, M., Carlson, J., & Schooler, J. (2011). Pupillometric evidence for the decoupling of attention from perceptual input during offline thought. PLOS ONE, 6, Article e18298. https://doi.org/10.1371/journal.pone.0018298
  149. Smallwood, J., McSpadden, M., & Schooler, J. W. (2007). The lights are on but no one’s home: Meta-awareness and the decoupling of attention when the mind wanders. Psychonomic Bulletin & Review, 14(3), 527–533. https://doi.org/10.3758/BF03194102 [DOI: 10.3758/BF03194102]
  150. Soto, D., Hodsoll, J., Rotshtein, P., & Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends in Cognitive Sciences, 12(9), 342–348. https://doi.org/10.1016/j.tics.2008.05.007 [DOI: 10.1016/j.tics.2008.05.007]
  151. Souza, A. S., & Oberauer, K. (2016). In search of the focus of attention in working memory: 13 years of the retro-cue effect. Attention, Perception, & Psychophysics, 78(7), 1839–1860. https://doi.org/10.3758/s13414-016-1108-5 [DOI: 10.3758/s13414-016-1108-5]
  152. Stawarczyk, D., Majerus, S., Maj, M., Van der Linden, M., & D’Argembeau, A. (2011). Mind-wandering: Phenomenology and function as assessed with a novel experience sampling method. Acta Psychologica, 136(3), 370–381. https://doi.org/10.1016/j.actpsy.2011.01.002 [DOI: 10.1016/j.actpsy.2011.01.002]
  153. Stokes, M. G., Atherton, K., Patai, E. Z., & Nobre, A. C. (2012). Long-term memory prepares neural activity for perception. Proceedings of the National Academy of Sciences, 109(6), E360–E367. https://doi.org/10.1073/pnas.1108555108 [DOI: 10.1073/pnas.1108555108]
  154. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643–662. https://doi.org/10.1037/h0054651 [DOI: 10.1037/h0054651]
  155. Suddendorf, T., & Corballis, M. C. (2007). The evolution of foresight: What is mental time travel, and is it unique to humans? The Behavioral and Brain Sciences, 30(3), 299–313; discussion 313–351. https://doi.org/10.1017/S0140525X07001975
  156. Summerfield, J. J., Lepsien, J., Gitelman, D. R., Mesulam, M. M., & Nobre, A. C. (2006). Orienting attention based on long-term memory experience. Neuron, 49(6), 905–916. https://doi.org/10.1016/j.neuron.2006.01.021 [DOI: 10.1016/j.neuron.2006.01.021]
  157. Tarder-Stoll, H., Jayakumar, M., Dimsdale-Zucker, H. R., Günseli, E., & Aly, M. (2020). Dynamic internal states shape memory retrieval. Neuropsychologia, 138, Article 107328. https://doi.org/10.1016/j.neuropsychologia.2019.107328
  158. Tas, A. C., Luck, S. J., & Hollingworth, A. (2016). The relationship between visual attention and visual working memory encoding: A dissociation between covert and overt orienting. Journal of Experimental Psychology: Human Perception and Performance, 42(8), 1121–1138. https://doi.org/10.1037/xhp0000212 [DOI: 10.1037/xhp0000212]
  159. Teasdale, J. D., Segal, Z., & Williams, J. M. (1995). How does cognitive therapy prevent depressive relapse and why should attentional control (mindfulness) training help? Behaviour Research and Therapy, 33(1), 25–39. https://doi.org/10.1016/0005-7967(94)e0011-7 [DOI: 10.1016/0005-7967(94)e0011-7]
  160. Theeuwes, J. (1994). Stimulus-driven capture and attentional set: Selective search for color and visual abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 799–806. https://doi.org/10.1037/0096-1523.20.4.799 [DOI: 10.1037/0096-1523.20.4.799]
  161. Thomson, D. R., Besner, D., & Smilek, D. (2015). A resource-control account of sustained attention: Evidence from mind-wandering and vigilance paradigms. Perspectives on Psychological Science, 10(1), 82–96. https://doi.org/10.1177/1745691614556681 [DOI: 10.1177/1745691614556681]
  162. Tooby, J., & Cosmides, L. (1992). The psychological foundations of culture. In J. H. Barkow, L. Cosmides, & J. Tooby (Eds.), The adapted mind: Evolutionary psychology and the generation of culture (pp. 19–136). Oxford University Press. [DOI: 10.1093/oso/9780195060232.003.0002]
  163. Trutti, A. C., Verschooren, S., Forstmann, B. U., & Boag, R. J. (2021). Understanding subprocesses of working memory through the lens of model-based cognitive neuroscience. Current Opinion in Behavioral Sciences, 38, 57–65. https://doi.org/10.1016/j.cobeha.2020.10.002 [DOI: 10.1016/j.cobeha.2020.10.002]
  164. Tulving, E. (1983). Elements of episodic memory. Oxford University Press.
  165. Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53(1), 1–25. https://doi.org/10.1146/annurev.psych.53.100901.135114 [DOI: 10.1146/annurev.psych.53.100901.135114]
  166. Unsworth, N., & Robison, M. K. (2016). Pupillary correlates of lapses of sustained attention. Cognitive, Affective, & Behavioral Neuroscience, 16(4), 601–615. https://doi.org/10.3758/s13415-016-0417-4 [DOI: 10.3758/s13415-016-0417-4]
  167. Unsworth, N., & Robison, M. K. (2018). Tracking arousal state and mind wandering with pupillometry. Cognitive, Affective & Behavioral Neuroscience, 18(4), 638–664. https://doi.org/10.3758/s13415-018-0594-4 [DOI: 10.3758/s13415-018-0594-4]
  168. Van Dam, N. T., van Vugt, M. K., Vago, D. R., Schmalzl, L., Saron, C. D., Olendzki, A., Meissner, T., Lazar, S. W., Kerr, C. E., Gorchov, J., Fox, K. C. R., Field, B. A., Britton, W. B., Brefczynski-Lewis, J. A., & Meyer, D. E. (2018). Mind the hype: A critical evaluation and prescriptive agenda for research on mindfulness and meditation. Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 13(1), 36–61. https://doi.org/10.1177/1745691617709589 [DOI: 10.1177/1745691617709589]
  169. van Ede, F., & Nobre, A. C. (2023). Turning attention inside out: How working memory serves behavior. Annual Review of Psychology, 74(1), 137–165. https://doi.org/10.1146/annurev-psych-021422-041757 [DOI: 10.1146/annurev-psych-021422-041757]
  170. van Ede, F., Board, A., G., & Nobre, A., C. (2020). Goal-directed and stimulus-driven selection of internal representations. Proceedings of the National Academy of Sciences, 117(39), 24590–24598. https://doi.org/10.1073/pnas.2013432117
  171. van Rooij, I. (2022). Psychological models and their distractors. Nature Reviews Psychology, 1–2. https://doi.org/10.1038/s44159-022-00031-5
  172. Vandierendonck, A., Liefooghe, B., & Verbruggen, F. (2010). Task switching: Interplay of reconfiguration and interference control. Psychological Bulletin, 136(4), 601–626. https://doi.org/10.1037/a0019791 [DOI: 10.1037/a0019791]
  173. Vanlessen, N., De Raedt, R., Koster, E. H. W., & Pourtois, G. (2016). Happy heart, smiling eyes: A systematic review of positive mood effects on broadening of visuospatial attention. Neuroscience & Biobehavioral Reviews, 68, 816–837. https://doi.org/10.1016/j.neubiorev.2016.07.001 [DOI: 10.1016/j.neubiorev.2016.07.001]
  174. Vergauwe, E., Barrouillet, P., & Camos, V. (2010). Do mental processes share a domain-general resource? Psychological Science, 21(3), 384–390. https://doi.org/10.1177/0956797610361340
  175. Vermeylen, L., Braem, S., & Notebaert, W. (2019). The affective twitches of task switches: Task switch cues are evaluated as negative. Cognition, 183, 124–130. https://doi.org/10.1016/j.cognition.2018.11.002 [DOI: 10.1016/j.cognition.2018.11.002]
  176. Vermeylen, L., Wisniewski, D., González-García, C., Hoofs, V., Notebaert, W., & Braem, S. (2020). Shared neural representations of cognitive conflict and negative affect in the medial frontal cortex. Journal of Neuroscience, 40(45), 8715–8725. https://doi.org/10.1523/JNEUROSCI.1744-20.2020 [DOI: 10.1523/JNEUROSCI.1744-20.2020]
  177. Verschooren, S., Liefooghe, B., Brass, M., & Pourtois, G. (2019a). Attentional flexibility is imbalanced: Asymmetric cost for switches between external and internal attention. Journal of Experimental Psychology: Human Perception and Performance, 45(10), 1399–1414. [PMID: 31343243]
  178. Verschooren, S., Schindler, S., De Raedt, R., & Pourtois, G. (2019b). Switching attention from internal to external information processing: A review of the literature and empirical support of the resource sharing account. Psychonomic Bulletin & Review, 26(2), 468–490. https://doi.org/10.3758/s13423-019-01568-y [DOI: 10.3758/s13423-019-01568-y]
  179. Verschooren, S., Pourtois, G., & Egner, T. (2020). More efficient shielding for internal than external attention? Evidence from asymmetrical switch costs. Journal of Experimental Psychology: Human Perception and Performance, 46(9), 912–925. https://doi.org/10.1037/xhp0000758 [DOI: 10.1037/xhp0000758]
  180. Verschooren, S., Kessler, Y., & Egner, T. (2021). Evidence for a single mechanism gating perceptual and long-term memory information into working memory. Cognition, 212, Article 104668. https://doi.org/10.1016/j.cognition.2021.104668
  181. Vo, K. D., Siqi-Liu, A., Chaire, A., Li, S., Demeter, E., Egner, T., & Woldorff, M. G. (2021). Neural dynamics of conflict control in working memory. Journal of Cognitive Neuroscience, 1–14. https://doi.org/10.1162/jocn_a_01744
  182. Wais, P. E., & Gazzaley, A. (2011). The impact of auditory distraction on retrieval of visual memories. Psychonomic Bulletin & Review, 18(6), 1090–1097. https://doi.org/10.3758/s13423-011-0169-7 [DOI: 10.3758/s13423-011-0169-7]
  183. Wais, P. E., Rubens, M. T., Boccanfuso, J., & Gazzaley, A. (2010). Neural mechanisms underlying the impact of visual distraction on retrieval of long-term memory. Journal of Neuroscience, 30(25), 8541–8550. https://doi.org/10.1523/JNEUROSCI.1478-10.2010 [DOI: 10.1523/JNEUROSCI.1478-10.2010]
  184. Wang, A. (2021). Numerical processing in the Stroop task of working memory. OALib, 08, 1–9. https://doi.org/10.4236/oalib.1107344 [DOI: 10.4236/oalib.1107344]
  185. Ward, A. F., & Wegner, D. M. (2013). Mind-blanking: When the mind goes away. Frontiers in Psychology, 4, 650. https://doi.org/10.3389/fpsyg.2013.00650 [DOI: 10.3389/fpsyg.2013.00650]
  186. Waszak, F., Hommel, B., & Allport, A. (2003). Task-switching and long-term priming: Role of episodic stimulus-task bindings in task-shift costs. Cognitive Psychology, 46(4), 361–413. https://doi.org/10.1016/s0010-0285(02)00520-0 [DOI: 10.1016/s0010-0285(02)00520-0]
  187. Watkins, E., & Brown, R. G. (2002). Rumination and executive function in depression: An experimental study. Journal of Neurology, Neurosurgery, and Psychiatry, 72(3), 400–402. https://doi.org/10.1136/jnnp.72.3.400 [DOI: 10.1136/jnnp.72.3.400]
  188. Waytz, A., Hershfield, H. E., & Tamir, D. I. (2015). Mental simulation and meaning in life. Journal of Personality and Social Psychology, 108(2), 336–355. https://doi.org/10.1037/a0038322 [DOI: 10.1037/a0038322]
  189. Woodman, G. F., & Vecera, S. P. (2011). The cost of accessing an object’s feature stored in visual working memory. Visual Cognition, 19(1), 1–12. https://doi.org/10.1080/13506285.2010.521140
  190. Woodman, G. F., Vogel, E. K., & Luck, S. J. (2001). Visual search remains efficient when visual working memory is full. Psychological Science, 12(3), 219–224. https://doi.org/10.1111/1467-9280.00339 [DOI: 10.1111/1467-9280.00339]
  191. Wright, R. D., & Ward, L. M. (2008). Orienting of attention. Oxford University Press. [DOI: 10.1093/oso/9780195130492.001.0001]
  192. Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 601–621. https://doi.org/10.1037/0096-1523.10.5.601 [DOI: 10.1037/0096-1523.10.5.601]
  193. Yeung, N., & Monsell, S. (2003a). Switching between tasks of unequal familiarity: The role of stimulus-attribute and response-set selection. Journal of Experimental Psychology: Human Perception and Performance, 29(2), 455–469. https://doi.org/10.1037/0096-1523.29.2.455 [DOI: 10.1037/0096-1523.29.2.455]
  194. Yeung, N., & Monsell, S. (2003b). The effects of recent practice on task switching. Journal of Experimental Psychology: Human Perception and Performance, 29(5), 919–936. https://doi.org/10.1037/0096-1523.29.5.919 [DOI: 10.1037/0096-1523.29.5.919]
  195. Yon, D., & Frith, C. D. (2021). Precision and the Bayesian brain. Current Biology, 31(17), R1026–R1032. https://doi.org/10.1016/j.cub.2021.07.044
  196. Zhou, Y., Curtis, C. E., Sreenivasan, K. K., & Fougnie, D. (2022). Common neural mechanisms control attention and working memory. Journal of Neuroscience, 42(37), 7110–7120. https://doi.org/10.1523/JNEUROSCI.0443-22.2022 [DOI: 10.1523/JNEUROSCI.0443-22.2022]

Grants

  1. 1212721N/Fonds Wetenschappelijk Onderzoek

MeSH Term

Humans
Memory, Short-Term
Meditation

Word Cloud

Created with Highcharts 10.0.0attentioninternalIDEAinformationattentionalexternalInternalAttentionresearchprimarilyeitherbalancingDominanceExternalbiasexaminefindingsmemorywanderinglinesmechanismscontrolhypothesisThroughout20thcenturypsychologicalliteratureconsidereddirectedoutsideworldrecenttheoriesconceivealsooperatingmountingevidencesuggestssinglesharedfocussharingimpliescognitivearchitectureneedscontinuouslyshiftedprioritizingfundamentalprinciplesunderlyingactcurrentlyunknownproposeevaluateoneprincipleshapehypothesis:ContrarytraditionalviewexternallyorientedassertsinherentlybiasedtowardprovidetheoreticalaccountmayevolvedwiderangeliteraturesspeakingversusincludingworkingswitchingvisualsearchmindsustainedmeditationarguemajordisparatecancoherentlyunderstoodFinallyconsidertentativeneurocognitivecontributingpracticalimplicationsdeliberatecontextpsychopathologyhopednovelmotivatescross-talkreviewedfutureempiricalstudiesdirectlyexaminingsteerinwardoutwardmoment-by-momentbasismind'seyeprevails:CognitiveMind

Similar Articles

Cited By