Prediction of methane emissions from fattening cattle using the methane-to-carbon dioxide ratio.

Kohei Oikawa, Tomoyuki Suzuki, Yuko Kamiya, Mikito Higuchi, Tomoya Yamada, Mitsuru Kamiya, Fuminori Terada
Author Information
  1. Kohei Oikawa: Institute of Livestock and Grassland Science, NARO, Nasushiobara, Tochigi, Japan. ORCID
  2. Tomoyuki Suzuki: Institute of Livestock and Grassland Science, NARO, Nasushiobara, Tochigi, Japan. ORCID
  3. Yuko Kamiya: Institute of Livestock and Grassland Science, NARO, Nasushiobara, Tochigi, Japan.
  4. Mikito Higuchi: Institute of Livestock and Grassland Science, NARO, Nasushiobara, Tochigi, Japan.
  5. Tomoya Yamada: Institute of Livestock and Grassland Science, NARO, Nasushiobara, Tochigi, Japan. ORCID
  6. Mitsuru Kamiya: Institute of Livestock and Grassland Science, NARO, Nasushiobara, Tochigi, Japan. ORCID
  7. Fuminori Terada: Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, Japan.

Abstract

This study aimed to develop a prediction equation for methane (CH ) emissions from fattening cattle based on the CH /carbon dioxide (CO ) ratio and validate the predictive ability of the developed equation. The prediction equation was developed using the CH /CO ratio combined with oxygen consumption and respiratory quotient estimations that were theoretically calculated from the relation between gas emissions and energy metabolism. To validate the prediction equation, gas measurements in the headboxes were conducted using eight Japanese Black steers. The predictive ability of the developed equation was compared with that of two previously reported equations. As a result, the developed and reported equations had significant (P < 0.01) linear relationships between the observed and predicted CH emissions. Notably, only the developed equation had a significant (P < 0.01) linear relationship between the observed and predicted CH emissions when expressed per unit of dry matter intake. The results suggest that the developed prediction equation has a higher predictive ability than previously reported equations, particularly in evaluating the efficiency of CH emissions. Although further validation is required, the equation developed in this study can be a valuable tool for on-farm estimations of individual CH emissions from fattening cattle.

Keywords

References

  1. Association of Official Analytical Chemists. (2000). Official methods of analysis of AOAC International (17th ed.). The Association of Official Analytical Chemists.
  2. Blaise, Y., Andriamandroso, A. L. H., Beckers, Y., Heinesch, B., Muñoz, E. C., Soyeurt, H., Froidmont, E., Lebeau, F., & Bindelle, J. (2018). The time after feeding alters methane emission kinetics in Holstein dry cows fed with various restricted diets. Livestock Science, 217(September 2017), 99-107. https://doi.org/10.1016/j.livsci.2018.07.004
  3. Blaxter, K. L., & Clapperton, J. L. (1965). Prediction of the amount of methane produced by ruminants. British Journal of Nutrition, 19(1), 511-522. https://doi.org/10.1079/bjn19650046
  4. Garnsworthy, P. C., Craigon, J., Hernandez-Medrano, J. H., & Saunders, N. (2012). On-farm methane measurements during milking correlate with total methane production by individual dairy cows. Journal of Dairy Science, 95(6), 3166-3180. https://doi.org/10.3168/jds.2011-4605
  5. Garnsworthy, P. C., Difford, G. F., Bell, M. J., Bayat, A. R., Huhtanen, P., Kuhla, B., Lassen, J., Peiren, N., Pszczola, M., Sorg, D., Visker, M. H. P. W., & Yan, T. (2019). Comparison of methods to measure methane for use in genetic evaluation of dairy cattle. Animals, 9(10), 1-12. https://doi.org/10.3390/ani9100837
  6. Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). Tackling climate change through livestock: A global assessment of emissions and mitigation opportunities. FAO.
  7. Haque, M. N., Cornou, C., & Madsen, J. (2014). Estimation of methane emission using the CO2 method from dairy cows fed concentrate with different carbohydrate compositions in automatic milking system. Livestock Science, 164(1), 57-66. https://doi.org/10.1016/j.livsci.2014.03.004
  8. Herd, R. M., Velazco, J. I., Arthur, P. F., & Hegarty, R. S. (2016). Proxies to adjust methane production rate of beef cattle when the quantity of feed consumed is unknown. Animal Production Science, 56(3), 231-237. https://doi.org/10.1071/AN15477
  9. Hook, S. E., Wright, A. D. G., & McBride, B. W. (2010). Methanogens: Methane producers of the rumen and mitigation strategies. Archaea, 2010, 50-60. https://doi.org/10.1155/2010/945785
  10. Hotovy, S. K., Johnson, K. A., Johnson, D. E., Carstens, G. E., Bourdon, R. M., & Seidel, G. E. (1991). Variation among twin beef cattle in maintenance energy requirements. Journal of Animal Science, 69(3), 940-946. https://doi.org/10.2527/1991.693940x
  11. Hristov, A. N., Oh, J., Firkins, J. L., Dijkstra, J., Kebreab, E., Waghorn, G., Makkar, H. P. S., Adesogan, A. T., Yang, W., Lee, C., Gerber, P. J., Henderson, B., & Tricarico, J. M. (2013). SPECIAL TOPICS-Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. Journal of Animal Science, 91(11), 5045-5069. https://doi.org/10.2527/jas.2013-6583
  12. Hristov, A. N., Oh, J., Giallongo, F., Frederick, T., Weeks, H., Zimmerman, P. R., Harper, M. T., Hristova, R. A., Zimmerman, R. S., & Branco, A. F. (2015). The use of an automated system (GreenFeed) to monitor enteric methane and carbon dioxide emissions from ruminant animals. Journal of Visualized Experiments, 2015(103), 1-8. https://doi.org/10.3791/52904
  13. Huhtanen, P., Bayat, A. R., Lund, P., Hellwing, A. L. F., & Weisbjerg, M. R. (2020). Short communication: Variation in feed efficiency hampers use of carbon dioxide as a tracer gas in measuring methane emissions in on-farm conditions. Journal of Dairy Science, 103(10), 9090-9095. https://doi.org/10.3168/jds.2020-18559
  14. Huhtanen, P., Cabezas-Garcia, E. H., Utsumi, S., & Zimmerman, S. (2015). Comparison of methods to determine methane emissions from dairy cows in farm conditions. Journal of Dairy Science, 98(5), 3394-3409. https://doi.org/10.3168/jds.2014-9118
  15. Jakobsen, K., & Thorbekt, G. (1993). The respiratory quotient in relation to fat deposition in fattening-growing pigs. British Journal of Nutrition, 69(2), 333-343. https://doi.org/10.1079/BJN19930037
  16. Johnson, K. A., & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 73(8), 2483-2492. https://doi.org/10.2527/1995.7382483x
  17. Lassen, J., Løvendahl, P., & Madsen, J. (2012). Accuracy of noninvasive breath methane measurements using Fourier transform infrared methods on individual cows. Journal of Dairy Science, 95(2), 890-898. https://doi.org/10.3168/jds.2011-4544
  18. Madsen, J., Bjerg, B. S., Hvelplund, T., Weisbjerg, M. R., & Lund, P. (2010). Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants. Livestock Science, 129(1-3), 223-227. https://doi.org/10.1016/j.livsci.2010.01.001
  19. McLean, J. A. (1972). On the calculation of heat production from open-circuit calorimetric measurements. British Journal of Nutrition, 27(3), 597-600. https://doi.org/10.1079/bjn19720130
  20. Moe, P. W., & Tyrrell, H. F. (1979). Methane production in dairy cows. Journal of Dairy Science, 62(10), 1583-1586. https://doi.org/10.3168/jds.S0022-0302(79)83465-7
  21. National Agriculture and Food Research Organization. (2009). Japanese feeding standards for beef cattle. Japan Livestock Industry Association.
  22. National Agriculture and Food Research Organization. (2010). Standard tables of feed composition in Japan. Japan Livestock Industry Association.
  23. Pickering, N. K., Oddy, V. H., Basarab, J., Cammack, K., Hayes, B., Hegarty, R. S., Lassen, J., McEwan, J. C., Miller, S., Pinares-Patino, C. S., & De Haas, Y. (2015). Animal board invited review: Genetic possibilities to reduce enteric methane emissions from ruminants. Animal, 9(9), 1431-1440. https://doi.org/10.1017/S1751731115000968
  24. R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/
  25. Renand, G., Vinet, A., Decruyenaere, V., Maupetit, D., & Dozias, D. (2019). Methane and carbon dioxide emission of beef heifers in relation with growth and feed efficiency. Animals, 9(12), 1-17. https://doi.org/10.3390/ani9121136
  26. Shibata, M., & Terada, F. (2010). Factors affecting methane production and mitigation in ruminants. Animal Science Journal, 81(1), 2-10. https://doi.org/10.1111/j.1740-0929.2009.00687.x
  27. Shibata, M., Terada, F., Kurihara, M., Nishida, T., & Iwasaki, K. (1993). Estimation of methane production in ruminants. Animal Science and Technology (Japan), 64(8), 790-796. https://doi.org/10.2508/chikusan.64.790
  28. Suzuki, T., Kamiya, Y., Oikawa, K., Nonaka, I., Shinkai, T., Terada, F., & Obitsu, T. (2021). Prediction of enteric methane emissions from lactating cows using methane to carbon dioxide ratio in the breath. Animal Science Journal, 92(1), e13637. https://doi.org/10.1111/asj.13637
  29. Terada, F., Abe, H., & Shibata, M. (1989). Comparisons of energy utilization between Japanese Black and Holstein steers. Asian-Australasian Journal of Animal Sciences, 2(3), 299-300. https://doi.org/10.5713/ajas.1989.299
  30. Troy, S. M., Duthie, C. A., Ross, D. W., Hyslop, J. J., Roehe, R., Waterhouse, A., & Rooke, J. A. (2016). A comparison of methane emissions from beef cattle measured using methane hoods with those measured using respiration chambers. Animal Feed Science and Technology, 211, 227-240. https://doi.org/10.1016/j.anifeedsci.2015.12.005
  31. Uemoto, Y., Ogawa, S., Satoh, M., Abe, H., & Terada, F. (2020). Development of prediction equation for methane-related traits in beef cattle under high concentrate diets. Animal Science Journal, 91(1), 1-11. https://doi.org/10.1111/asj.13341
  32. Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Grants

  1. JPJ011299/MAFF

MeSH Term

Cattle
Animals
Diet
Carbon Dioxide
Methane
Farms
Energy Metabolism

Chemicals

Carbon Dioxide
Methane

Word Cloud

Created with Highcharts 10.0.0equationCHemissionsdevelopedpredictionfatteningcattleratiomethanedioxidepredictiveabilityusingreportedequationsstudyvalidateestimationsgaspreviouslysignificantP < 001linearobservedpredictedmethane-to-carbonaimeddevelopbased/carbonCO/COcombinedoxygenconsumptionrespiratoryquotienttheoreticallycalculatedrelationenergymetabolismmeasurementsheadboxesconductedeightJapaneseBlacksteerscomparedtworesultrelationshipsNotablyrelationshipexpressedperunitdrymatterintakeresultssuggesthigherparticularlyevaluatingefficiencyAlthoughvalidationrequiredcanvaluabletoolon-farmindividualPredictionemissionsniffermethod

Similar Articles

Cited By