Reconstructing early transmission networks of SARS-CoV-2 using a genomic mutation model.

Chao-Yuan Cheng, Zhi-Bin Zhang
Author Information
  1. Chao-Yuan Cheng: State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
  2. Zhi-Bin Zhang: State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

Abstract

The coronavirus disease 2019 (COVID-19) pandemic has greatly damaged human society, but the origins and early transmission patterns of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogen remain unclear. Here, we reconstructed the transmission networks of SARS-CoV-2 during the first three and six months since its first report based on ancestor-offspring relationships using BANAL-52-referenced mutations. We explored the position (i.e., root, middle, or tip) of early detected samples in the evolutionary tree of SARS-CoV-2. In total, 6 799 transmission chains and 1 766 transmission networks were reconstructed, with chain lengths ranging from 1-9 nodes. The root node samples of the 1 766 transmission networks were from 58 countries or regions and showed no common ancestor, indicating the occurrence of many independent or parallel transmissions of SARS-CoV-2 when first detected (i.e., all samples were located at the tip position of the evolutionary tree). No root node sample was found in any sample ( =31, all from the Chinese mainland) collected in the first 15 days from 24 December 2019. Results using six-month data or RaTG13-referenced mutation data were similar. The reconstruction method was verified using a simulation approach. Our results suggest that SARS-CoV-2 may have already been spreading independently worldwide before the outbreak of COVID-19 in Wuhan, China. Thus, a comprehensive global survey of human and animal samples is essential to explore the origins of SARS-CoV-2 and its natural reservoirs and hosts.

Keywords

References

  1. Nature. 2020 Mar;579(7798):270-273 [PMID: 32015507]
  2. Emerg Microbes Infect. 2020 Dec;9(1):221-236 [PMID: 31987001]
  3. Emerg Infect Dis. 2020 Jul;26(7):1542-1547 [PMID: 32315281]
  4. J Med Virol. 2020 May;92(5):501-511 [PMID: 32027035]
  5. Philos Trans R Soc Lond B Biol Sci. 1995 Jul 29;349(1327):33-40 [PMID: 8748017]
  6. Nature. 2020 Dec;588(7836):15-16 [PMID: 33230273]
  7. Infect Genet Evol. 2020 Apr;79:104212 [PMID: 32004758]
  8. PLoS One. 2013 Nov 01;8(11):e78122 [PMID: 24223766]
  9. Nature. 2020 Mar;579(7798):265-269 [PMID: 32015508]
  10. Infect Genet Evol. 2020 Sep;83:104351 [PMID: 32387564]
  11. Nature. 2020 Jul;583(7815):286-289 [PMID: 32380510]
  12. Zool Res. 2021 Nov 18;42(6):834-844 [PMID: 34766482]
  13. Lancet. 2020 Feb 22;395(10224):565-574 [PMID: 32007145]
  14. Mol Biol Evol. 2021 Apr 13;38(4):1537-1543 [PMID: 33295605]
  15. J Med Virol. 2021 Jan;93(1):564-568 [PMID: 32697346]
  16. Mol Biol Evol. 1999 Jan;16(1):37-48 [PMID: 10331250]
  17. J Med Virol. 2020 Jun;92(6):602-611 [PMID: 32104911]
  18. Cladistics. 2016 Dec;32(6):691-699 [PMID: 34753275]
  19. Zool Res. 2020 May 18;41(3):213-219 [PMID: 32314559]
  20. Virus Res. 2020 Oct 2;287:198098 [PMID: 32687861]
  21. Genomics Proteomics Bioinformatics. 2020 Dec;18(6):640-647 [PMID: 32663617]
  22. Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):20198-20201 [PMID: 32723824]
  23. PLoS Genet. 2020 Nov 18;16(11):e1009175 [PMID: 33206635]
  24. Hum Genet. 2001 Feb;108(2):167-73 [PMID: 11281456]
  25. J Infect. 2020 Aug;81(2):318-356 [PMID: 32325130]
  26. Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9241-9243 [PMID: 32269081]
  27. Zool Res. 2022 Sep 18;43(5):871-874 [PMID: 36031769]
  28. Mol Biol Evol. 2021 May 4;38(5):1777-1791 [PMID: 33316067]
  29. N Engl J Med. 2021 May 13;384(19):1866-1868 [PMID: 33761203]
  30. J Clin Med. 2020 Feb 20;9(2): [PMID: 32093211]
  31. Nature. 2020 Jul;583(7815):282-285 [PMID: 32218527]
  32. Genomics Proteomics Bioinformatics. 2020 Dec;18(6):749-759 [PMID: 33704069]
  33. Nat Commun. 2021 Feb 9;12(1):972 [PMID: 33563978]
  34. Nature. 2022 Apr;604(7905):330-336 [PMID: 35172323]
  35. Innovation (Camb). 2021 Nov 28;2(4):100159 [PMID: 34485968]
  36. Natl Sci Rev. 2021 Dec 11;9(4):nwab223 [PMID: 35497643]
  37. Sci Bull (Beijing). 2021 Nov 30;66(22):2297-2311 [PMID: 33585048]
  38. Viruses. 2019 Mar 02;11(3): [PMID: 30832341]
  39. Cell. 2021 Aug 19;184(17):4380-4391.e14 [PMID: 34147139]
  40. Lancet. 2021 Feb 6;397(10273):462 [PMID: 33549181]
  41. Natl Sci Rev. 2020 Jun;7(6):1012-1023 [PMID: 34676127]
  42. J Med Virol. 2020 May;92(5):518-521 [PMID: 32022275]
  43. Lancet. 2021 Oct 16;398(10309):1401-1402 [PMID: 34600605]
  44. Mol Biol Evol. 2020 Nov 1;37(11):3363-3379 [PMID: 32895707]
  45. Viruses. 2020 Oct 22;12(11): [PMID: 33105685]
  46. Virology. 2002 Jun 20;298(1):96-105 [PMID: 12093177]
  47. Zool Res. 2020 May 18;41(3):247-257 [PMID: 32351056]
  48. Curr Biol. 2020 Jun 8;30(11):2196-2203.e3 [PMID: 32416074]
  49. J Med Virol. 2020 Apr;92(4):448-454 [PMID: 31997390]
  50. Cell. 2020 Apr 16;181(2):223-227 [PMID: 32220310]
  51. Nat Commun. 2021 Nov 9;12(1):6563 [PMID: 34753934]
  52. JAMA. 2021 Feb 9;325(6):529-531 [PMID: 33404586]
  53. Sci China Life Sci. 2021 Sep;64(9):1560-1563 [PMID: 34269976]
  54. Science. 2005 Oct 28;310(5748):676-9 [PMID: 16195424]

MeSH Term

Animals
Humans
SARS-CoV-2
COVID-19
Phylogeny
Mutation
Genomics

Word Cloud

Similar Articles

Cited By