Understanding daily rhythms in weakly electric fish: the role of melatonin on the electric behavior of Brachyhypopomus gauderio.

Juan I Vazquez, Valentina Gascue, Laura Quintana, Adriana Migliaro
Author Information
  1. Juan I Vazquez: Dpto de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay.
  2. Valentina Gascue: Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
  3. Laura Quintana: Dpto de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay. ORCID
  4. Adriana Migliaro: Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay. amigliaro@fcien.edu.uy. ORCID

Abstract

Living organisms display molecular, physiological and behavioral rhythms synchronized with natural environmental cycles. Understanding the interaction between environment, physiology and behavior requires taking into account the complexity of natural habitats and the diversity of behavioral and physiological adaptations. Brachyhypopomus gauderio is characterized by the emission of electric organ discharges (EOD), with a very stable rate modulated by social and environmental cues. The nocturnal arousal in B. gauderio coincides with a melatonin-dependent EOD rate increase. Here, we first show a daily cycle in both the EOD basal rate (EOD-BR) and EOD-BR variability of B. gauderio in nature. We approached the understanding of the role of melatonin in this natural behavior through both behavioral pharmacology and in vitro assays. We report, for the first time in gymnotiformes, a direct effect of melatonin on the pacemaker nucleus (PN) in in vitro preparation. Melatonin treatment lowered EOD-BR in freely moving fish and PN basal rate, while increasing the variability of both. These results show that melatonin plays a key role in modulating the electric behavior of B. gauderio through its effect on rate and variability, both of which must be under a tight temporal regulation to prepare the animal for the challenging nocturnal environment.

Keywords

References

  1. Adkins-Regan E (2005) Hormones and animal social behavior. Princeton University Press, Princeton
  2. Ardanaz JL, Silva A, Macadar O (2001) Temperature sensitivity of the electric organ discharge waveform in Gymnotus carapo. J Comp Physiol A 187:853–864. https://doi.org/10.1007/s00359-001-0256-8 [DOI: 10.1007/s00359-001-0256-8]
  3. Bennett MVL (1971) Electric organs. Fish Physiol 5:347–491. https://doi.org/10.1016/S1546-5098(08)60051-5 [DOI: 10.1016/S1546-5098(08)60051-5]
  4. Black-Cleworth P (1970) The role of electrical discharges in the non-reproductive social behaviour of Gymnotus carapo (Gymnotidae, Pisces). Anim Behav Monogr 3:1-IN1. https://doi.org/10.1016/S0066-1856(70)80001-2 [DOI: 10.1016/S0066-1856(70)80001-2]
  5. Borde M, Quintana L, Comas V, Silva A (2020) Hormone-mediated modulation of the electromotor CPG in pulse-type weakly electric fish. Commonalities and differences across species. Dev Neurobiol 80:70–80. https://doi.org/10.1002/dneu.22732 [DOI: 10.1002/dneu.22732]
  6. Campuzano A, Cambras T, Vilaplana J, Canal MM, Carulla M, Díez-Noguera A (1999) Period length of the light–dark cycle influences the growth rate and food intake in mice. Physiol Behav 67:791–797. https://doi.org/10.1016/S0031-9384(99)00196-1 [DOI: 10.1016/S0031-9384(99)00196-1]
  7. Capurro A, Longtin A, Bagarinao E, Sato S, Macadar O, Pakdaman K (2001) Variability of the electric organ discharge interval duration in resting Gymnotus carapo. Biol Cybern 84:309–321. https://doi.org/10.1007/s004220000222 [DOI: 10.1007/s004220000222]
  8. Caputi AA, Aguilera PA, Castelló ME (2003) Probability and amplitude of novelty responses as a function of the change in contrast of the reafferent image in G. carapo. J Exp Biol 206:999–1010. https://doi.org/10.1242/jeb.00199 [DOI: 10.1242/jeb.00199]
  9. Caputi AA, Carlson BA, Macadar O (2005) Electric organs and their control. In: Bullock TH, Hopkins CD, Popper AN, Fay RR (eds) Electroreception. Springer, New York, New York, NY, pp 410–451 [DOI: 10.1007/0-387-28275-0_14]
  10. Cipolla-Neto J, Amaral FG, do, (2018) Melatonin as a hormone: new physiological and clinical insights. Endocr Rev 39:990–1028. https://doi.org/10.1210/er.2018-00084 [DOI: 10.1210/er.2018-00084]
  11. Claustrat B, Brun J, Chazot G (2005) The basic physiology and pathophysiology of melatonin. Sleep Med Rev 9:11–24. https://doi.org/10.1016/J.SMRV.2004.08.001 [DOI: 10.1016/J.SMRV.2004.08.001]
  12. Comas V, Langevin K, Silva A, Borde M (2019) Distinctive mechanisms underlie the emission of social electric signals of submission in Gymnotus omarorum. J Exp Biol 222:jeb195354. https://doi.org/10.1242/jeb.195354 [DOI: 10.1242/jeb.195354]
  13. Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olsece J (2010) International union of basic and clinical pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev 62:343. https://doi.org/10.1124/pr.110.002832 [DOI: 10.1124/pr.110.002832]
  14. Dunlap KD, Smith GT, Yekta A (2000) Temperature dependence of electrocommunication signals and their underlying neural rhythms in the weakly electric fish, Apteronotus leptorhynchus. Brain Behav Evol 55:152–162. https://doi.org/10.1159/000006649 [DOI: 10.1159/000006649]
  15. Emet M, Ozcan H, Ozel L, Yayla M, Halici Z, Hacimuftuoglu A (2016) A review of melatonin, its receptors and drugs. Eurasian J Med 48:135. https://doi.org/10.5152/EURASIANJMED.2015.0267 [DOI: 10.5152/EURASIANJMED.2015.0267]
  16. Engler G, Zupanc GKH (2001) Differential production of chirping behavior evoked by electrical stimulation of the weakly electric fish, Apteronotus leptorhynchus. J Comp Physiol A 187:747–756. https://doi.org/10.1007/s00359-001-0248-8 [DOI: 10.1007/s00359-001-0248-8]
  17. Falcón J, Migaud H, Muñoz-Cueto JA, Carrillo M (2010) Current knowledge on the melatonin system in teleost fish. Gen Comp Endocrinol 165:469–482. https://doi.org/10.1016/J.YGCEN.2009.04.026 [DOI: 10.1016/J.YGCEN.2009.04.026]
  18. Feng NY, Bass AH (2016) Singing fish rely on circadian rhythm and melatonin for the timing of nocturnal courtship vocalization. Curr Biol 26:2681–2689. https://doi.org/10.1016/j.cub.2016.07.079 [DOI: 10.1016/j.cub.2016.07.079]
  19. Feng NY, Fergus DJ, Bass AH (2015) Neural transcriptome reveals molecular mechanisms for temporal control of vocalization across multiple timescales. BMC Genom 16:408. https://doi.org/10.1186/s12864-015-1577-2 [DOI: 10.1186/s12864-015-1577-2]
  20. Feng NY, Marchaterre MA, Bass AH (2019) Melatonin receptor expression in vocal, auditory, and neuroendocrine centers of a highly vocal fish, the plainfin midshipman (Porichthys notatus). J Comp Neurol 527:1362–1377. https://doi.org/10.1002/cne.24629 [DOI: 10.1002/cne.24629]
  21. Fishman M, Jacono FJ, Park S, Jamasebi R, Thungtong A, Loparo KA, Dick TE (2012) A method for analyzing temporal patterns of variability of a time series from Poincaré plots. J Appl Physiol 113:297–306. https://doi.org/10.1152/japplphysiol.01377.2010 [DOI: 10.1152/japplphysiol.01377.2010]
  22. Gaildrat P, Ron B, Falcón J (1998) Daily and circadian variations in 2-[125I]-Iodomelatonin binding sites in the pike brain (Esox Iucius). J Neuroendocrinol 10:511–517. https://doi.org/10.1046/j.1365-2826.1998.00240.x [DOI: 10.1046/j.1365-2826.1998.00240.x]
  23. Gascue V, Silva A, Migliaro A (2020) Social modulation on daily variability in electric behavior. Sleep Sci. https://doi.org/10.5935/1984-0063.20200012 [DOI: 10.5935/1984-0063.20200012]
  24. Giora J, Malabarba LR (2009) Brachyhypopomus gauderio, new species, a new example of underestimated species diversity of electric fishes in the southern South America (Gymnotiformes: Hypopomidae). Zootaxa. https://doi.org/10.5281/ZENODO.187560 [DOI: 10.5281/ZENODO.187560]
  25. Heiligenberg W (1991) Sensory control of behavior in electric fish. Curr Opin Neurobiol 1:633–637. https://doi.org/10.1016/S0959-4388(05)80041-8 [DOI: 10.1016/S0959-4388(05)80041-8]
  26. Huan C, Zhou M, Wu M, Zhang Z, Mei Y (2001) Activation of melatonin receptor increases a delayed rectifier K current in rat cerebellar granule cells. Brain Res 917:182–190. https://doi.org/10.1016/S0006-8993(01)02915-8 [DOI: 10.1016/S0006-8993(01)02915-8]
  27. Ikegami T, Motohashi E, Doi H, Hattori A, Ando H (2009) Synchronized diurnal and circadian expressions of four subtypes of melatonin receptor genes in the diencephalon of a puffer fish with lunar-related spawning cycles. Neurosci Lett 462:58–63. https://doi.org/10.1016/J.NEULET.2009.06.076 [DOI: 10.1016/J.NEULET.2009.06.076]
  28. Inyushkin AN, Bhumbra GS, Gonzalez JA, Dyball REJ (2007) Melatonin modulates spike coding in the rat suprachiasmatic nucleus. J Neuroendocrinol 19:671–681. https://doi.org/10.1111/j.1365-2826.2007.01574.x [DOI: 10.1111/j.1365-2826.2007.01574.x]
  29. Isorna E, de Pedro N, Valenciano AI, Alonso-Gómez AL, Delgado MJ (2017) Interplay between the endocrine and circadian systems in fishes. J Endocrinol 232:R141–R159. https://doi.org/10.1530/JOE-16-0330 [DOI: 10.1530/JOE-16-0330]
  30. Jiang ZG, Nelson CS, Allen CN (1995) Melatonin activates an outward current and inhibits Ih in rat suprachiasmatic nucleus neurons. Brain Res 687:125–132. https://doi.org/10.1016/0006-8993(95)00478-9 [DOI: 10.1016/0006-8993(95)00478-9]
  31. Jun JJ, Longtin A, Maler L (2014) Enhanced sensory sampling precedes self-initiated locomotion in an electric fish. J Exp Biol 217:3615–3628. https://doi.org/10.1242/jeb.105502 [DOI: 10.1242/jeb.105502]
  32. Jun JJ, Longtin A, Maler L (2016) Active sensing associated with spatial learning reveals memory-based attention in an electric fish. J Neurophysiol 115:2577–2592. https://doi.org/10.1152/jn.00979.2015 [DOI: 10.1152/jn.00979.2015]
  33. Kawasaki M, Heiligenberg W (1989) Distinct mechanisms of modulation in a neuronal oscillator generate different social signals in the electric fish Hypopomus. J Comp Physiol A 165:731–741. https://doi.org/10.1007/BF00610872 [DOI: 10.1007/BF00610872]
  34. Kawasaki M, Maler L, Rose GJ, Heiligenberg W (1988) Anatomical and functional organization of the prepacemaker nucleus in gymnotiform electric fish: the accommodation of two behaviors in one nucleus. J Comp Neurol 276:113–131. https://doi.org/10.1002/cne.902760108 [DOI: 10.1002/cne.902760108]
  35. Kronfeld-Schor N, Bloch G, Schwartz WJ (2013) Animal clocks: when science meets nature. Proc R Soc B Biol Sci 280:20131354. https://doi.org/10.1098/rspb.2013.1354 [DOI: 10.1098/rspb.2013.1354]
  36. Lissmann HW, Schwassmann HO (1965) Activity rhythm of an electric fish, Gymnorhamphichthys hypostomus, ellis. Z Vergl Physiol 51:153–171. https://doi.org/10.1007/BF00299291 [DOI: 10.1007/BF00299291]
  37. López-Patiño MA, Rodríguez-Illamola A, Gesto M, Soengas JL, Míguez JM (2011) Changes in plasma melatonin levels and pineal organ melatonin synthesis following acclimation of rainbow trout (Oncorhynchus mykiss) to different water salinities. J Exp Biol 214:928–936. https://doi.org/10.1242/jeb.051516 [DOI: 10.1242/jeb.051516]
  38. Mason R, Brooks A (1988) The electrophysiological effects of melatonin and a putative melatonin antagonist (N-acetyltryptamine) on rat suprachiasmatic neurons in vitro. Neurosci Lett 95:296–301. https://doi.org/10.1016/0304-3940(88)90674-X [DOI: 10.1016/0304-3940(88)90674-X]
  39. Meissl H, Martin C, Tabata M (1990) Melatonin modulates the neural activity in the photosensory pineal organ of the trout: evidence for endocrine-neuronal interactions. J Comp Physiol A 167:641–648. https://doi.org/10.1007/BF00192657 [DOI: 10.1007/BF00192657]
  40. Migliaro A, Silva A (2016) Melatonin regulates daily variations in electric behavior arousal in two species of weakly electric fish with different social structures. Brain Behav Evol 87:232–241. https://doi.org/10.1159/000445494 [DOI: 10.1159/000445494]
  41. Migliaro A, Moreno V, Marchal P, Silva A (2018) Daily changes in the electric behavior of weakly electric fish naturally persist in constant darkness and are socially synchronized. Biol Open 7:bio036319. https://doi.org/10.1242/bio.036319 [DOI: 10.1242/bio.036319]
  42. Miranda M, Silva AC, Stoddard PK (2008) Use of space as an indicator of social behavior and breeding systems in the gymnotiform electric fish Brachyhypopomus pinnicaudatus. Environ Biol Fishes 83:379–389. https://doi.org/10.1007/s10641-008-9358-2 [DOI: 10.1007/s10641-008-9358-2]
  43. Moortgat KT, Bullock TH, Sejnowski TJ (2000) Precision of the pacemaker nucleus in a weakly electric fish: network versus cellular influences. J Neurophysiol 83:971–983. https://doi.org/10.1152/jn.2000.83.2.971 [DOI: 10.1152/jn.2000.83.2.971]
  44. Oliveira CCV, Figueiredo F, Soares F, Pinto W, Dinis MT (2018) Meagre’s melatonin profiles under captivity: circadian rhythmicity and light sensitiveness. Fish Physiol Biochem 44:885–893. https://doi.org/10.1007/s10695-018-0478-0 [DOI: 10.1007/s10695-018-0478-0]
  45. Oliveira-Abreu K, Ferreira-da-Silva FW, da Silva-Alves KS, Silva-dos-Santos NM, Cardozo-Texeira AC, Gaspar do Amaral F, Cipolla-Neto J, Leal-Cardoso JH (2018) Melatonin decreases neuronal excitability in a sub-population of dorsal root ganglion neurons. Brain Res 1692:1–8. https://doi.org/10.1016/J.BRAINRES.2018.04.027 [DOI: 10.1016/J.BRAINRES.2018.04.027]
  46. Oliveira-Abreu K, Silva-dos-Santos NM, Coelho-de-Souza AN, Ferreira-da-Silva FW, da Silva-Alves KS, Cardoso-Teixeira AC, Cipolla-Neto J, Leal-Cardoso JH (2019) Melatonin reduces excitability in dorsal root ganglia neurons with inflection on the repolarization phase of the action potential. Int J Mol Sci. https://doi.org/10.3390/ijms20112611 [DOI: 10.3390/ijms20112611]
  47. Perrone R, Silva AC (2018) Status-dependent vasotocin modulation of dominance and subordination in the weakly electric fish Gymnotus omarorum. Front Behav Neurosci. https://doi.org/10.3389/fnbeh.2018.00001 [DOI: 10.3389/fnbeh.2018.00001]
  48. Perrone R, Macadar O, Silva A (2009) Social electric signals in freely moving dyads of Brachyhypopomus pinnicaudatus. J Comp Physiol A 195:501–514. https://doi.org/10.1007/s00359-009-0427-6 [DOI: 10.1007/s00359-009-0427-6]
  49. Perrone R, Batista G, Lorenzo D, Macadar O, Silva A (2010) Vasotocin actions on electric behavior: interspecific, seasonal, and social context-dependent differences. Front Behav Neurosci 4:1–12
  50. Perrone R, Migliaro A, Comas V, Quintana L, Borde M, Silva A (2014) Local vasotocin modulation of the pacemaker nucleus resembles distinct electric behaviors in two species of weakly electric fish. J Physiol 108:203–212. https://doi.org/10.1016/J.JPHYSPARIS.2014.07.007 [DOI: 10.1016/J.JPHYSPARIS.2014.07.007]
  51. Pinillos ML, De Pedro N, Alonso-Gómez AL, Alonso-Bedate M, Delgado MJ (2001) Food intake inhibition by melatonin in goldfish (Carassius auratus). Physiol Behav 72:629–634. https://doi.org/10.1016/S0031-9384(00)00399-1 [DOI: 10.1016/S0031-9384(00)00399-1]
  52. Pouso P, Quintana L, López GC, Somoza GM, Silva A, Trudeau VL (2015) The secretogranin-II derived peptide secretoneurin modulates electric behavior in the weakly pulse type electric fish, Brachyhypopomus gauderio. Gen Comp Endocrinol 222:158–166. https://doi.org/10.1016/J.YGCEN.2015.06.015 [DOI: 10.1016/J.YGCEN.2015.06.015]
  53. Quintana L, Sierra F, Silva A, Macadar O (2011) A central pacemaker that underlies the production of seasonal and sexually dimorphic social signals: functional aspects revealed by glutamate stimulation. J Comp Physiol A 197:211–225. https://doi.org/10.1007/s00359-010-0603-8 [DOI: 10.1007/s00359-010-0603-8]
  54. Quintana L, Harvey-Girard E, Lescano C, Macadar O, Lorenzo D (2014) Sex-specific role of a glutamate receptor subtype in a pacemaker nucleus controlling electric behavior. J Physiol 108:155–166. https://doi.org/10.1016/J.JPHYSPARIS.2014.04.004 [DOI: 10.1016/J.JPHYSPARIS.2014.04.004]
  55. Refinetti R, Cornélissen G, Halberg F (2007) Procedures for numerical analysis of circadian rhythms. Biol Rhythm Res 38:275–325. https://doi.org/10.1080/09291010600903692 [DOI: 10.1080/09291010600903692]
  56. Reppert SM, Weaver DR, Cassone VM, Godson C, Kolakowski LF Jr (1995) Melatonin receptors are for the birds: molecular analysis of two receptor subtypes differentially expressed in chick brain. Neuron 15:1003–1015. https://doi.org/10.1016/0896-6273(95)90090-X [DOI: 10.1016/0896-6273(95)90090-X]
  57. Scott FF, Belle MDC, Delagrange P, Piggins HD (2010) Electrophysiological effects of melatonin on mouse Per1 and non-Per1 suprachiasmatic nuclei neurons vn vitro. J Neuroendocrinol 22:1148–1156. https://doi.org/10.1111/j.1365-2826.2010.02063.x [DOI: 10.1111/j.1365-2826.2010.02063.x]
  58. Shibata S, Cassone VM, Moore RY (1989) Effects of melatonin on neuronal activity in the rat suprachiasmatic nucleus in vitro. Neurosci Lett 97:140–144. https://doi.org/10.1016/0304-3940(89)90153-5 [DOI: 10.1016/0304-3940(89)90153-5]
  59. Silva A, Quintana L, Ardanaz JL, Macadar O (2002) Environmental and hormonal influences upon EOD waveform in gymnotiform pulse fish. J Physiol 96:473–484. https://doi.org/10.1016/S0928-4257(03)00003-2 [DOI: 10.1016/S0928-4257(03)00003-2]
  60. Silva A, Quintana L, Galeano M, Errandonea P (2003) Biogeography and breeding in gymnotiformes from Uruguay. Environ Biol Fishes 66:329–338. https://doi.org/10.1023/A:1023986600069 [DOI: 10.1023/A]
  61. Silva A, Perrone R, Macadar O (2007) Environmental, seasonal, and social modulations of basal activity in a weakly electric fish. Physiol Behav 90:525–536. https://doi.org/10.1016/J.PHYSBEH.2006.11.003 [DOI: 10.1016/J.PHYSBEH.2006.11.003]
  62. Spiro JE (1997) Differential activation of glutamate receptor subtypes on a single class of cells enables a neural oscillator to produce distinct behaviors. J Neurophysiol 78:835–847. https://doi.org/10.1152/jn.1997.78.2.835 [DOI: 10.1152/jn.1997.78.2.835]
  63. Stehle J, Vanecek J, Vollrath L (1989) Effects of melatonin on spontaneous electrical activity of neurons in rat suprachiasmatic nuclei: an in vitro iontophoretic study. J Neural Transm Gen Sect JNT 78:173–177. https://doi.org/10.1007/BF01252503 [DOI: 10.1007/BF01252503]
  64. Stoddard PK, Markham MR, Salazar VL, Allee S (2007) Circadian rhythms in electric waveform structure and rate in the electric fish Brachyhypopomus pinnicaudatus. Physiol Behav 90:11–20. https://doi.org/10.1016/J.PHYSBEH.2006.08.013 [DOI: 10.1016/J.PHYSBEH.2006.08.013]
  65. Vitar M (2019) El núcleo marcapaso de Gymnotus omarorum: caracterización de la variabilidad de un modelo de oscilador neural en vertebrados. Dissertation, Universidad de la República (Uruguay)
  66. von der Emde G (2006) Non-visual environmental imaging and object detection through active electrolocation in weakly electric fish. J Comp Physiol A 192:601–612. https://doi.org/10.1007/s00359-006-0096-7 [DOI: 10.1007/s00359-006-0096-7]
  67. Wiechmann AF, Yang XL, Wu SM, Hollyfield JG (1988) Melatonin enhances horizontal cell sensitivity in salamander retina. Brain Res 453:377–380. https://doi.org/10.1016/0006-8993(88)90182-5 [DOI: 10.1016/0006-8993(88)90182-5]
  68. Zupanc MM, Engler G, Midson A, Oxberry H, Hurst LA, Symon MR, Zupanc GKH (2001) Light–dark-controlled changes in modulations of the electric organ discharge in the teleost Apteronotus leptorhynchus. Anim Behav 62:1119–1128. https://doi.org/10.1006/ANBE.2001.1867 [DOI: 10.1006/ANBE.2001.1867]
  69. Zupanc GKH, Sîrbulescu RF, Nichols A, Ilies I (2006) Electric interactions through chirping behavior in the weakly electric fish, Apteronotus leptorhynchus. J Comp Physiol A 192:159–173. https://doi.org/10.1007/s00359-005-0058-5 [DOI: 10.1007/s00359-005-0058-5]

Grants

  1. FCE_3_126178/Agencia Nacional de Investigación e Innovación
  2. Grupo 883158/Comisión Sectorial de Investigación Científica

MeSH Term

Animals
Electric Fish
Melatonin
Gymnotiformes
Electric Organ
Behavior, Animal

Chemicals

Melatonin

Word Cloud

Created with Highcharts 10.0.0behaviorgauderiorateelectricmelatoninbehavioralrhythmsnaturalEODBEOD-BRvariabilityrolephysiologicalenvironmentalUnderstandingenvironmentBrachyhypopomusnocturnalfirstshowdailybasalvitroeffectPNMelatoninLivingorganismsdisplaymolecularsynchronizedcyclesinteractionphysiologyrequirestakingaccountcomplexityhabitatsdiversityadaptationscharacterizedemissionorgandischargesstablemodulatedsocialcuesarousalcoincidesmelatonin-dependentincreasecyclenatureapproachedunderstandingpharmacologyassaysreporttimegymnotiformesdirectpacemakernucleusin inpreparationtreatmentloweredfreelymovingfishincreasingresultsplayskeymodulatingmusttighttemporalregulationprepareanimalchallengingweaklyfish:DailyElectricNeuralbasesPacemaker

Similar Articles

Cited By