Preceding Host History of Conjugative Resistance Plasmids Affects Intra- and Interspecific Transfer Potential from Biofilm.

Ilmur Jonsdottir, Cindy Given, Reetta Penttinen, Matti Jalasvuori
Author Information
  1. Ilmur Jonsdottir: Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland. ORCID
  2. Cindy Given: Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland.
  3. Reetta Penttinen: Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland. ORCID
  4. Matti Jalasvuori: Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland. ORCID

Abstract

Conjugative plasmids can confer antimicrobial resistance (AMR) to their host bacterium. The plasmids disperse even between distantly related host species, rescuing the host from otherwise detrimental effects of antibiotics. Little is known about the role of these plasmids in the spread of AMR during antibiotic treatment. One unstudied question is whether the past evolutionary history of a plasmid in a particular species creates host specificity in its rescue potential or if interspecific coevolution can improve interspecific rescues. To study this, we coevolved the plasmid RP4 under three different host settings; solely Escherichia coli or Klebsiella pneumoniae, or alternating between both of them. The ability of evolved plasmids in bacterial biofilm to rescue susceptible planktonic host bacteria of either the same or different species during beta-lactam treatment was tested. The interspecific coevolution seemed to decrease rescue potential for the RP4 plasmid, while the K. pneumoniae evolved plasmid became more host specific. Large deletion in the region encoding the mating pair formation (Tra2) apparatus was detected in the plasmids evolved with K. pneumoniae. This adaptation resulted in the exapted evolution of resistance against a plasmid-dependent bacteriophage PRD1. Further, previous studies have suggested that mutations in this region completely abolish the plasmid's ability to conjugate; however, our study shows it is not essential for conjugation but rather affects the host-specific conjugation efficiency. Overall, the results suggest that previous evolutionary history can result in the separation of host-specific plasmid lineages that may be further amplified by unselected exaptations such as phage resistance. Antimicrobial resistance (AMR) is a major global public health threat which can rapidly spread in microbial communities via conjugative plasmids. Here, we advance with evolutionary rescue via conjugation in a more natural setting, namely, biofilm, and incorporate a broad-host range plasmid RP4 to test whether intra- and interspecific host histories affect its transfer potential. Escherichia coli and Klebsiella pneumoniae hosts were seen to elicit different evolutionary influences on the RP4 plasmid, leading to clear differences in the rescue potential and underlining the significant role of the plasmid-host interactions in the spread of AMR. We also contradicted previous reports that established certain conjugal transfer genes of RP4 as essential. This work enhances the understanding of how plasmid host range evolve in different host settings and further, the potential effects it may have on the horizontal spread of AMR in complex environments such as biofilms.

Keywords

References

  1. ISME J. 2015 Mar 17;9(4):934-45 [PMID: 25333461]
  2. Can J Microbiol. 2018 May;64(5):293-304 [PMID: 29562144]
  3. Microbiology (Reading). 2022 Jul;168(7): [PMID: 35849537]
  4. Microbiol Spectr. 2017 Sep;5(5): [PMID: 28944751]
  5. Mol Biol Evol. 2020 Jun 1;37(6):1563-1576 [PMID: 32027370]
  6. Microbiol Mol Biol Rev. 2010 Sep;74(3):434-52 [PMID: 20805406]
  7. FEMS Microbiol Ecol. 2007 Mar;59(3):738-48 [PMID: 17059480]
  8. Methods Mol Biol. 2014;1151:165-88 [PMID: 24838886]
  9. J Virol. 2000 Sep;74(17):7781-6 [PMID: 10933684]
  10. Mol Biol Evol. 2016 Nov;33(11):2860-2873 [PMID: 27501945]
  11. Antimicrob Agents Chemother. 2000 Apr;44(4):840-7 [PMID: 10722479]
  12. Front Microbiol. 2016 Feb 19;7:173 [PMID: 26925045]
  13. J Bacteriol. 1951 Sep;62(3):293-300 [PMID: 14888646]
  14. Trends Microbiol. 2022 Jun;30(6):534-543 [PMID: 34848115]
  15. NPJ Biofilms Microbiomes. 2016;2: [PMID: 28480050]
  16. J Bacteriol. 1972 Nov;112(2):690-6 [PMID: 4628745]
  17. Nat Ecol Evol. 2017 Sep;1(9):1354-1363 [PMID: 29046540]
  18. J Bacteriol. 1995 Aug;177(16):4779-91 [PMID: 7642506]
  19. J Mol Biol. 1994 Jun 24;239(5):623-63 [PMID: 8014987]
  20. J Antibiot (Tokyo). 2017 Jun;70(6):805-808 [PMID: 28352105]
  21. J Bacteriol. 1993 Oct;175(20):6415-25 [PMID: 8407818]
  22. Lancet. 2022 Feb 12;399(10325):629-655 [PMID: 35065702]
  23. J Bacteriol. 1999 Nov;181(21):6689-96 [PMID: 10542170]
  24. Nature. 1988 Sep 22;335(6188):351-2 [PMID: 3047585]
  25. Gene. 1985;33(1):103-19 [PMID: 2985470]
  26. J Bacteriol. 2000 Dec;182(23):6751-61 [PMID: 11073921]
  27. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  28. Front Microbiol. 2015 Oct 31;6:1216 [PMID: 26583011]
  29. Nat Commun. 2018 Apr 13;9(1):1462 [PMID: 29654279]
  30. Evol Appl. 2017 May 08;10(6):640-647 [PMID: 28616070]
  31. Mol Biol Evol. 1996 Jan;13(1):47-55 [PMID: 8583905]
  32. FEMS Microbiol Ecol. 2020 Jul 1;96(7): [PMID: 32436564]
  33. Curr Biol. 2015 Aug 3;25(15):2034-9 [PMID: 26190075]
  34. PLoS Biol. 2021 Oct 13;19(10):e3001225 [PMID: 34644303]
  35. Int J Evol Biol. 2012;2012:874153 [PMID: 22567533]
  36. J Bacteriol. 1998 Dec;180(23):6164-72 [PMID: 9829924]
  37. Nat Rev Microbiol. 2004 Feb;2(2):95-108 [PMID: 15040259]
  38. Nat Rev Microbiol. 2022 Feb;20(2):63 [PMID: 34824463]
  39. Sci Rep. 2017 Jul 7;7(1):4853 [PMID: 28687759]
  40. Nat Ecol Evol. 2020 Jun;4(6):863-869 [PMID: 32251388]
  41. Front Cell Infect Microbiol. 2022 Sep 21;12:1000721 [PMID: 36211951]
  42. JAMA. 2009 Dec 2;302(21):2323-9 [PMID: 19952319]
  43. Antibiotics (Basel). 2020 Jun 02;9(6): [PMID: 32498393]
  44. Curr Biol. 2019 Oct 21;29(20):R1094-R1103 [PMID: 31639358]
  45. Biol Lett. 2005 Jun 22;1(2):250-2 [PMID: 17148179]
  46. Clin Microbiol Rev. 2018 Aug 1;31(4): [PMID: 30068738]
  47. J Clin Microbiol. 2009 Jul;47(7):2325-7 [PMID: 19420178]
  48. Gigascience. 2018 Jan 1;7(1):1-6 [PMID: 29220494]
  49. Nat Rev Microbiol. 2005 Sep;3(9):722-32 [PMID: 16138100]
  50. FEMS Microbiol Lett. 2004 Jul 15;236(2):163-73 [PMID: 15251193]
  51. Can J Microbiol. 2019 Jan;65(1):34-44 [PMID: 30248271]
  52. Ann N Y Acad Sci. 2015 Apr;1341:96-105 [PMID: 25703428]
  53. Evolution. 2013 Oct;67(10):2936-44 [PMID: 24094344]
  54. Microbiol Spectr. 2022 Apr 27;10(2):e0013322 [PMID: 35416702]
  55. mSystems. 2018 Oct 2;3(5): [PMID: 30320219]
  56. Curr Opin Biotechnol. 2003 Jun;14(3):255-61 [PMID: 12849777]
  57. Philos Trans R Soc Lond B Biol Sci. 2009 Aug 12;364(1527):2275-89 [PMID: 19571247]
  58. Front Microbiol. 2018 Dec 04;9:2989 [PMID: 30564223]
  59. Mob Genet Elements. 2016 May 04;6(3):e1179074 [PMID: 27510852]
  60. Physiol Rev. 1952 Oct;32(4):403-30 [PMID: 13003535]
  61. FEMS Immunol Med Microbiol. 2012 Jul;65(2):183-95 [PMID: 22444301]
  62. FEMS Microbiol Rev. 2011 Sep;35(5):936-56 [PMID: 21711366]
  63. Philos Trans R Soc Lond B Biol Sci. 2017 Dec 5;372(1735): [PMID: 29061896]
  64. FEMS Microbiol Rev. 2012 Nov;36(6):1083-104 [PMID: 22393901]
  65. NPJ Biofilms Microbiomes. 2022 Dec 9;8(1):95 [PMID: 36481746]
  66. BMC Evol Biol. 2016 Apr 02;16:70 [PMID: 27039285]
  67. J Bacteriol. 1997 Aug;179(15):4733-40 [PMID: 9244259]
  68. mSystems. 2019 Jan 15;4(1): [PMID: 30944871]

Grants

  1. 322204/Academy of Finland (AKA)
  2. 347531/Academy of Finland (AKA)

MeSH Term

Plasmids
Anti-Bacterial Agents
Escherichia coli
Bacteria
beta-Lactams
Klebsiella pneumoniae

Chemicals

Anti-Bacterial Agents
beta-Lactams

Word Cloud

Created with Highcharts 10.0.0hostplasmidplasmidsrescueresistanceAMRevolutionarypotentialRP4canspreadinterspecificdifferentpneumoniaespeciesevolvedpreviousconjugationtransferConjugativeeffectsroleantibiotictreatmentwhetherhistorycoevolutionstudysettingsEscherichiacoliKlebsiellaabilitybiofilmKregionevolutionessentialhost-specificmayviarangeinteractionshorizontalbiofilmsconferantimicrobialbacteriumdisperseevendistantlyrelatedrescuingotherwisedetrimentalantibioticsLittleknownOneunstudiedquestionpastparticularcreatesspecificityimproverescuescoevolvedthreesolelyalternatingbacterialsusceptibleplanktonicbacteriaeitherbeta-lactamtestedseemeddecreasebecamespecificLargedeletionencodingmatingpairformationTra2apparatusdetectedadaptationresultedexaptedplasmid-dependentbacteriophagePRD1studiessuggestedmutationscompletelyabolishplasmid'sconjugatehowevershowsratheraffectsefficiencyOverallresultssuggestresultseparationlineagesamplifiedunselectedexaptationsphageAntimicrobialmajorglobalpublichealththreatrapidlymicrobialcommunitiesconjugativeadvancenaturalsettingnamelyincorporatebroad-hosttestintra-historiesaffecthostsseenelicitinfluencesleadingcleardifferencesunderliningsignificantplasmid-hostalsocontradictedreportsestablishedcertainconjugalgenesworkenhancesunderstandingevolvecomplexenvironmentsPrecedingHostHistoryResistancePlasmidsAffectsIntra-InterspecificTransferPotentialBiofilmexperimentalgeneHGThost-plasmid

Similar Articles

Cited By