A Multiscale Model for Shear-Mediated Platelet Adhesion Dynamics: Correlating In Silico with In Vitro Results.
Peineng Wang, Jawaad Sheriff, Peng Zhang, Yuefan Deng, Danny Bluestein
Author Information
Peineng Wang: Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY, 11794-8084, USA.
Jawaad Sheriff: Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY, 11794-8084, USA.
Peng Zhang: Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA.
Yuefan Deng: Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA.
Danny Bluestein: Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY, 11794-8084, USA. danny.bluestein@stonybrook.edu. ORCID
Platelet adhesion to blood vessel walls is a key initial event in thrombus formation in both vascular disease processes and prosthetic cardiovascular devices. We extended a deformable multiscale model (MSM) of flowing platelets, incorporating Dissipative Particle Dynamics (DPD) and Coarse-Grained Molecular Dynamics (CGMD) describing molecular-scale intraplatelet constituents and their interaction with surrounding flow, to predict platelet adhesion dynamics under physiological flow shear stresses. Binding of platelet glycoprotein receptor Ibα (GPIbα) to von Willebrand factor (vWF) on the blood vessel wall was modeled by a molecular-level hybrid force field and validated with in vitro microchannel experiments of flowing platelets at 30 dyne/cm. High frame rate videos of flipping platelets were analyzed with a Semi-Unsupervised Learning System (SULS) machine learning-guided imaging approach to segment platelet geometries and quantify adhesion dynamics parameters. In silico flipping dynamics followed in vitro measurements at 15 and 45 dyne/cm with high fidelity, predicting GPIbα-vWF bonding and debonding processes, distribution of bonds strength, and providing a biomechanical insight into initiation of the complex platelet adhesion process. The adhesion model and simulation framework can be further integrated with our established MSMs of platelet activation and aggregation to simulate initial mural thrombus formation on blood vessel walls.
Belyaev, A. V. Catching platelets from the bloodflow: the role of the conformation of von Willebrand factor. Math. Model. Nat. Phenom. 13:44, 2018.
[DOI: 10.1051/mmnp/2018043]
Belyaev, A. V. Long ligands reinforce biological adhesion under shear flow. Phys Rev E.97:042407, 2018.
[PMID: 29758601]
Belyaev, A. V. and Y. K. Kushchenko. Biomechanical activation of blood platelets via adhesion to von Willebrand factor studied with mesoscopic simulations. Biomech. Model. Mechanobiol. 2023.
Bluestein, D. Research approaches for studying flow-induced thromboembolic complications in blood recirculating devices. Expert Rev. Med Devices. 1:65–80, 2004.
[PMID: 16293011]
Danes, N. A., and K. Leiderman. A density-dependent FEM-FCT algorithm with application to modeling platelet aggregation. Int. J. Numer. Methods Biomed. Eng. 35:e3212, 2019.
[DOI: 10.1002/cnm.3212]
Doggett, T. A., G. Girdhar, A. Lawshé, D. W. Schmidtke, I. J. Laurenzi, S. L. Diamond, and T. G. Diacovo. Selectin-like kinetics and biomechanics promote rapid platelet adhesion in flow: the GPIbα-vWF tether bond. Biophys J. 83:194–205, 2002.
[PMID: 12080112]
Du, J., D. Kim, G. Alhawael, D. N. Ku, and A. L. Fogelson. Clot permeability, agonist transport, and platelet binding kinetics in arterial thrombosis. Biophys. J. 119:2102–2115, 2020.
[PMID: 33147477]
Du, X. Signaling and regulation of the platelet glycoprotein Ib–IX–V complex. Curr Opin. Hematol. 14:262–269, 2007.
[PMID: 17414217]
Evans, E. A., and D. A. Calderwood. Forces and bond dynamics in cell adhesion. Science. 316:1148–1153, 2007.
[PMID: 17525329]
Fitzgibbon, S., J. Cowman, A. J. Ricco, D. Kenny, and E. S. Shaqfeh. Examining platelet adhesion via Stokes flow simulations and microfluidic experiments. Soft Matter. 11:355–367, 2015.
[PMID: 25382632]
Fox, J. E., L. P. Aggerbeck, and M. C. Berndt. Structure of the glycoprotein IbIX complex from platelet membranes. J. Biol. Chem. 263:4882–4890, 1988.
[PMID: 3280570]
Gao, C., P. Zhang and D. Bluestein. Multiscale Modeling of Mechanotransduction Processes in Flow-Induced Platelet Activation. 2016 IEEE 2nd International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data and Security (IDS); 2016:274–279.
Gao, C., P. Zhang, G. Marom, Y. Deng, and D. Bluestein. Reducing the effects of compressibility in DPD-based blood flow simulations through severe stenotic microchannels. J. Comput. Phys. 335:812–827, 2017.
[DOI: 10.1016/j.jcp.2017.01.062]
Gogia, S., and S. Neelamegham. Role of fluid shear stress in regulating VWF structure, function and related blood disorders. Biorheology. 52:319–335, 2015.
[PMID: 26600266]
Gupta, P., P. Zhang, J. Sheriff, D. Bluestein, and Y. Deng. A multiscale model for multiple platelet aggregation in shear flow. Biomech. Model. Mechanobiol. 20:1013–1030, 2021.
[PMID: 33782796]
Gupta, P., P. Zhang, J. Sheriff, D. Bluestein, and Y. Deng. A multiscale model for recruitment aggregation of platelets by correlating with in vitro results. Cell Mol. Bioeng. 12:327–343, 2019.
[PMID: 31662802]
Han, C., P. Zhang, D. Bluestein, G. Cong, and Y. Deng. Artificial intelligence for accelerating time integrations in multiscale modeling. J. Comput. Phys.427:110053, 2021.
[PMID: 35821963]
Han, C., P. Zhang, Y. Zhu, G. Cong, J. R. Kozloski, C. C. Yang, L. Zhang, and Y. Deng. Scalable multiscale modeling of platelets with 100 million particles. J. Supercomput. 78:1–18, 2022.
[DOI: 10.1007/s11227-022-04648-4]
Jackson, S., W. S. Nesbitt, and E. Westein. Dynamics of platelet thrombus formation. J. Thromb. Haemost. 7:17–20, 2009.
[PMID: 19630759]
Kim, J., C.-Z. Zhang, X. Zhang, and T. A. Springer. A mechanically stabilized receptor–ligand flex-bond important in the vasculature. Nature. 466:992–995, 2010.
[PMID: 20725043]
Kim, J., C. Z. Zhang, X. Zhang, and T. A. Springer. A mechanically stabilized receptor-ligand flex-bond important in the vasculature. Nature. 466:992–995, 2010.
[PMID: 20725043]
King, M. R., and D. A. Hammer. Multiparticle adhesive dynamics: Interactions between stably rolling cells. Biophys. J. 81:799–813, 2001.
[PMID: 11463626]
Li, H., K. Sampani, X. Zheng, D. P. Papageorgiou, A. Yazdani, M. O. Bernabeu, G. E. Karniadakis, and J. K. Sun. Predictive modelling of thrombus formation in diabetic retinal microaneurysms. R. Soc. Open Sci.7:201102, 2020.
[PMID: 32968536]
Li, Z., M. K. Delaney, K. A. O’Brien, and X. Du. Signaling during platelet adhesion and activation. Arterioscler Thromb Vasc Biol. 30:2341–2349, 2010.
[PMID: 21071698]
Link, K. G., M. G. Sorrells, N. A. Danes, K. B. Neeves, K. Leiderman, and A. L. Fogelson. A mathematical model of platelet aggregation in an extravascular injury under flow. Multiscale Model Simul. 18:1489–1524, 2020.
[PMID: 33867873]
Liu, Z. L., C. Bresette, C. K. Aidun, and D. N. Ku. SIPA in 10 milliseconds: VWF tentacles agglomerate and capture platelets under high shear. Blood Adv. 6:2453–2465, 2022.
[PMID: 34933342]
Michelson, A. D. Platelets (Third Edition): Academic Press; 2013.
Mody, N. A., and M. R. King. Platelet adhesive dynamics: part II: high shear-induced transient aggregation via GPIbα-vWF-GPIbα bridging. Biophys. J. 95:2556–2574, 2008.
[PMID: 18515386]
Mody, N. A., O. Lomakin, T. A. Doggett, T. G. Diacovo, and M. R. King. Mechanics of transient platelet adhesion to von Willebrand factor under flow. Biophys. J. 88:1432–1443, 2005.
[PMID: 15533923]
Plimpton, S., A. Thompson and P. Crozier. LAMMPS Molecular Dynamics Simulator. 2012.
Qi, Q. M., E. Dunne, I. Oglesby, I. Schoen, A. J. Ricco, D. Kenny, and E. S. G. Shaqfeh. In vitro measurement and modeling of platelet adhesion on VWF-coated surfaces in channel flow. Biophys. J. 116:1136–1151, 2019.
[PMID: 30824114]
Ruggeri, Z. M. Platelet adhesion under flow. Microcirculation. 16:58–83, 2009.
[PMID: 19191170]
Savage, B., F. Almus-Jacobs, and Z. M. Ruggeri. Specific synergy of multiple substrate–receptor interactions in platelet thrombus formation under flow. Cell. 94:657–666, 1998.
[PMID: 9741630]
Shankar, K. N., Y. Zhang, T. Sinno, and S. L. Diamond. A three-dimensional multiscale model for the prediction of thrombus growth under flow with single-platelet resolution. PLoS Comput. Biol.18:e1009850, 2022.
[PMID: 35089923]
Sheriff, J., and D. Bluestein. Platelet dynamics in blood flow. Dyn. Blood Cell Suspen. Microflows. 95:215–256, 2019.
[DOI: 10.1201/b21806-7]
Sheriff, J., J. S. Soares, M. Xenos, J. Jesty, M. J. Slepian, and D. Bluestein. Evaluation of shear-induced platelet activation models under constant and dynamic shear stress loading conditions relevant to devices. Ann. Biomed. Eng. 41:1279–1296, 2013.
[PMID: 23400312]
Sheriff, J., P. N. Wang, P. Zhang, Z. J. Zhang, Y. F. Deng, and D. Bluestein. In vitro measurements of shear-mediated platelet adhesion kinematics as analyzed through machine learning. Ann. Biomed. Eng. 49:3452–3464, 2021.
[PMID: 33973127]
Spann, A. P., J. E. Campbell, S. R. Fitzgibbon, A. Rodriguez, A. P. Cap, L. H. Blackbourne, and E. S. G. Shaqfeh. The effect of hematocrit on platelet adhesion: experiments and simulations. Biophys. J. 111:577–588, 2016.
[PMID: 27508441]
Stivala, S., S. Sorrentino, S. Gobbato, N. R. Bonetti, G. G. Camici, T. F. Lüscher, O. Medalia, and J. H. Beer. Glycoprotein Ib clustering in platelets can be inhibited by α-linolenic acid as revealed by cryo-electron tomography. Haematologica. 105:1660, 2020.
[PMID: 31439672]
Vahidkhah, K., S. L. Diamond, and P. Bagchi. Platelet dynamics in three-dimensional simulation of whole blood. Biophys. J. 106:2529–2540, 2014.
[PMID: 24896133]
Wang, L., Z. Chen, J. Zhang, X. Zhang, and Z. J. Wu. Modeling clot formation of shear-injured platelets in flow by a dissipative particle dynamics method. Bulle. Math. Biol. 82:83, 2020.
[DOI: 10.1007/s11538-020-00760-9]
White, J. G., M. D. Krumwiede, D. J. Cocking-Johnson, and G. Escolar. Dynamic redistribution of glycoprotein Ib/IX on surface-activated platelets: a second look. Am. J. Pathol. 147:1057, 1995.
[PMID: 7573351]
Wu, Y. P., H. H. van Breugel, H. Lankhof, R. J. Wise, R. I. Handin, P. G. de Groot, and J. J. Sixma. Platelet adhesion to multimeric and dimeric von Willebrand factor and to collagen type III preincubated with von Willebrand factor. Arterioscler. Thromb. Vasc. Biol. 16:611–620, 1996.
[PMID: 8963717]
Wu, Z., Z. Xu, O. Kim, and M. Alber. Three-dimensional multi-scale model of deformable platelets adhesion to vessel wall in blood flow. Philos. Trans. A. 372:20130380, 2014.
[DOI: 10.1098/rsta.2013.0380]
Yazdani, A., Y. Deng, H. Li, E. Javadi, Z. Li, S. Jamali, C. Lin, J. D. Humphrey, C. S. Mantzoros, and G. Em Karniadakis. Integrating blood cell mechanics, platelet adhesive dynamics and coagulation cascade for modelling thrombus formation in normal and diabetic blood. J. R. Soc. Interface. 18:20200834, 2021.
[PMID: 33530862]
Ye, T., H. Shi, N. Phan-Thien, and C. T. Lim. The key events of thrombus formation: platelet adhesion and aggregation. Biomech. Model. Mechanobiol. 19:943–955, 2020.
[PMID: 31754949]
Ye, T., X. Zhang, G. Li, and S. Wang. Biomechanics in thrombus formation from direct cellular simulations. Physical Review E.102:042410, 2020.
[PMID: 33212741]
Zhang, P., L. Zhang, M. J. Slepian, Y. Deng, and D. Bluestein. A multiscale biomechanical model of platelets: Correlating with in-vitro results. J Biomech. 50:26–33, 2017.
[PMID: 27894676]
Zhang, P., N. Zhang, C. Gao, L. Zhang, Y. Gao, Y. Deng, and D. Bluestein. Scalability test of multiscale fluid-platelet model for three top supercomputers. Comput Phys Commun. 204:132–140, 2016.
[PMID: 27570250]
Zhang, Z., P. Zhang, C. Han, G. Cong, C.-C. Yang, and Y. Deng. Online machine learning for accelerating molecular dynamics modeling of cells. Front. Mol. Biosci. 8:1317, 2022.
[DOI: 10.3389/fmolb.2021.812248]
Zhang, Z., P. Zhang, P. Wang, J. Sheriff, D. Bluestein, and Y. Deng. Rapid analysis of streaming platelet images by semi-unsupervised learning. Comput. Med. Imaging Graph.89:101895, 2021.
[PMID: 33798915]
Zheng, X., A. Yazdani, H. Li, J. D. Humphrey, and G. E. Karniadakis. A three-dimensional phase-field model for multiscale modeling of thrombus biomechanics in blood vessels. PLoS Comput. Biol.16:e1007709, 2020.
[PMID: 32343724]