Mutant Prevention Concentration, Frequency of Spontaneous Mutant Selection, and Mutant Selection Window-a New Approach to the Determination of the Antimicrobial Potency of Compounds.

Joanna Krajewska, Stefan Tyski, Agnieszka E Laudy
Author Information
  1. Joanna Krajewska: Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, Warsaw, Poland. ORCID
  2. Stefan Tyski: Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland. ORCID
  3. Agnieszka E Laudy: Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, Warsaw, Poland. ORCID

Abstract

The analysis of antimicrobial activity is usually MIC- and minimal bactericidal concentration (MBC)-focused, though also crucial are resistance-related parameters, e.g., the frequency of spontaneous mutant selection (FSMS), the mutant prevention concentration (MPC), and the mutant selection window (MSW). -determined MPCs, however, are sometimes variable, poorly repeatable, and not always reproducible . We propose a new approach to the determination of MSWs, along with novel parameters: MPC-D, MSW-D (for dominant mutants, i.e., selected with a high frequency, without a fitness loss), and MPC-F, MSW-F (for inferior mutants, i.e., with an impaired fitness). We also propose a new method for preparing the high-density inoculum (>10 CFU/mL). In this study, the MPC and MPC-D (limited by FSMS of <10) of ciprofloxacin, linezolid, and novel benzosiloxaborole (No37) were determined for Staphylococcus aureus ATCC 29213 using the standard agar method, while the MPC-D and MPC-F were determined by the novel broth method. Regardless of the method, MSWs of linezolid and No37 were the same. However, MSWs of ciprofloxacin in the broth method was narrower than in the agar method. In the broth method, the 24-h incubation of ~10 CFU in a drug-containing broth differentiates the mutants that can dominate the cell population from those that can only be selected under exposure. We consider MPC-Ds in the agar method to be less variable and more repeatable than MPCs. Meanwhile, the broth method may decrease discrepancies between and MSWs. The proposed approaches may help establish MPC-D-related resistance-restricting therapies.

Keywords

References

  1. PLoS One. 2019 Oct 9;14(10):e0223326 [PMID: 31596898]
  2. Microbiol Spectr. 2022 Jun 29;10(3):e0214521 [PMID: 35475640]
  3. Antimicrob Agents Chemother. 2009 Aug;53(8):3384-90 [PMID: 19487439]
  4. Antimicrob Agents Chemother. 2011 May;55(5):2409-12 [PMID: 21343454]
  5. J Infect Dis. 2002 Feb 15;185(4):561-5 [PMID: 11865411]
  6. Int J Antimicrob Agents. 2004 Aug;24(2):161-7 [PMID: 15288315]
  7. Antimicrob Agents Chemother. 2009 Nov;53(11):4740-8 [PMID: 19738020]
  8. Antimicrob Agents Chemother. 2003 Jan;47(1):440-1 [PMID: 12499234]
  9. Antimicrob Agents Chemother. 2003 Sep;47(9):2850-8 [PMID: 12936984]
  10. J Antimicrob Chemother. 2022 Feb 23;77(3):641-645 [PMID: 34878138]
  11. Front Microbiol. 2019 Jan 31;10:42 [PMID: 30766517]
  12. Antimicrob Agents Chemother. 2015 Feb;59(2):1014-9 [PMID: 25451050]
  13. Antimicrob Agents Chemother. 2001 Jun;45(6):1799-802 [PMID: 11353628]
  14. Antimicrob Agents Chemother. 2000 Jul;44(7):1771-7 [PMID: 10858329]
  15. J Infect Dis. 2006 Dec 1;194(11):1601-8 [PMID: 17083047]
  16. Antimicrob Agents Chemother. 2001 Feb;45(2):433-8 [PMID: 11158737]
  17. Antimicrob Agents Chemother. 2006 Jan;50(1):403-4 [PMID: 16377725]
  18. Front Vet Sci. 2022 Mar 24;9:860472 [PMID: 35400105]
  19. Int J Antimicrob Agents. 2020 Jun;55(6):105965 [PMID: 32325206]
  20. Clin Infect Dis. 2001 Sep 15;33 Suppl 3:S147-56 [PMID: 11524712]
  21. Pathogens. 2021 Nov 22;10(11): [PMID: 34832681]
  22. J Antimicrob Chemother. 2003 Aug;52(2):258-63 [PMID: 12865395]
  23. Int J Antimicrob Agents. 2014 Oct;44(4):354-7 [PMID: 25129317]
  24. Eur J Clin Microbiol Infect Dis. 2014 Mar;33(3):385-9 [PMID: 24036892]
  25. Eye Contact Lens. 2007 May;33(3):161-4 [PMID: 17502752]
  26. Int J Antimicrob Agents. 2004 Aug;24(2):150-60 [PMID: 15288314]
  27. J Chemother. 2005 Oct;17(5):484-92 [PMID: 16323436]
  28. Onderstepoort J Vet Res. 2022 Jan 10;89(1):e1-e7 [PMID: 35144445]
  29. J Antimicrob Chemother. 2008 Sep;62(3):434-6 [PMID: 18544596]
  30. Antimicrob Agents Chemother. 1999 Jul;43(7):1756-8 [PMID: 10390236]
  31. J Antibiot (Tokyo). 2017 Feb;70(2):166-173 [PMID: 27756910]
  32. Antimicrob Agents Chemother. 2017 Nov 22;61(12): [PMID: 29038260]
  33. Eur J Clin Microbiol Infect Dis. 2015 Apr;34(4):737-44 [PMID: 25424036]
  34. J Antimicrob Chemother. 2007 Dec;60(6):1380-3 [PMID: 17905797]
  35. J Ocul Pharmacol Ther. 2009 Aug;25(4):329-34 [PMID: 19650708]
  36. Antimicrob Agents Chemother. 2007 Nov;51(11):3810-5 [PMID: 17664314]
  37. J Antibiot (Tokyo). 2013 Dec;66(12):709-12 [PMID: 23981959]
  38. Int J Antimicrob Agents. 2014 May;43(5):418-22 [PMID: 24721233]
  39. Antimicrob Agents Chemother. 2007 Dec;51(12):4261-6 [PMID: 17938193]
  40. Int J Antimicrob Agents. 2010 Jan;35(1):45-9 [PMID: 19910164]
  41. Front Microbiol. 2021 Feb 09;11:605962 [PMID: 33633692]
  42. J Antibiot (Tokyo). 2018 May;71(5):514-521 [PMID: 29348530]
  43. Diagn Microbiol Infect Dis. 2003 Mar;45(3):203-6 [PMID: 12663162]
  44. Environ Microbiol. 2022 Mar;24(3):1279-1293 [PMID: 34666420]
  45. Antimicrob Agents Chemother. 2008 Jun;52(6):1924-8 [PMID: 18378704]
  46. PLoS Pathog. 2011 Jul;7(7):e1002158 [PMID: 21811410]
  47. Antimicrob Agents Chemother. 2004 May;48(5):1699-707 [PMID: 15105123]
  48. Int J Antimicrob Agents. 2008 Dec;32(6):488-93 [PMID: 18790614]
  49. Diagn Microbiol Infect Dis. 2003 Apr;45(4):265-7 [PMID: 12729997]
  50. J Antimicrob Chemother. 2017 Nov 01;72(11):3100-3107 [PMID: 28981793]

MeSH Term

Anti-Bacterial Agents
Linezolid
Agar
Mutation
Microbial Sensitivity Tests
Drug Resistance, Bacterial
Anti-Infective Agents
Ciprofloxacin

Chemicals

Anti-Bacterial Agents
Linezolid
Agar
Anti-Infective Agents
Ciprofloxacin

Word Cloud

Created with Highcharts 10.0.0methodbrothMSWsMPC-DantimicrobialemutantMPCnovelmutantsMPC-FagarMutantactivityconcentrationalsofrequencyselectionFSMSMSWMPCsvariablerepeatableproposenewMSW-DiselectedfitnessMSW-FciprofloxacinlinezolidNo37determinedcanmaySelectionanalysisusuallyMIC-minimalbactericidalMBC-focusedthoughcrucialresistance-relatedparametersgspontaneouspreventionwindow-determinedhoweversometimespoorlyalwaysreproducibleapproachdeterminationalongparameters:dominanthighwithoutlossinferiorimpairedpreparinghigh-densityinoculum>10CFU/mLstudylimitedFSMS of<10benzosiloxaboroleStaphylococcusaureusATCC29213usingstandardRegardlessHowevernarrower24-hincubation~10CFUdrug-containingdifferentiatesdominatecellpopulationexposureconsiderMPC-DslessMeanwhiledecreasediscrepanciesproposedapproacheshelpestablishMPC-D-relatedresistance-restrictingtherapiesPreventionConcentrationFrequencySpontaneousWindow-aNewApproachDeterminationAntimicrobialPotencyCompoundsantibioticresistanceagents

Similar Articles

Cited By