A shark-inspired general model of tooth morphogenesis unveils developmental asymmetries in phenotype transitions.

Roland Zimm, Fidji Berio, Mélanie Debiais-Thibaud, Nicolas Goudemand
Author Information
  1. Roland Zimm: Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Lyon Cedex 07 69364, France. ORCID
  2. Fidji Berio: Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Lyon Cedex 07 69364, France. ORCID
  3. Mélanie Debiais-Thibaud: Institut des Sciences de l'Evolution de Montpellier, University of Montpellier, CNRS, Institut de la Recherche pour le Développement, Montpellier 34095, France.
  4. Nicolas Goudemand: Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Lyon Cedex 07 69364, France. ORCID

Abstract

Developmental complexity stemming from the dynamic interplay between genetic and biomechanic factors canalizes the ways genotypes and phenotypes can change in evolution. As a paradigmatic system, we explore how changes in developmental factors generate typical tooth shape transitions. Since tooth development has mainly been researched in mammals, we contribute to a more general understanding by studying the development of tooth diversity in sharks. To this end, we build a general, but realistic, mathematical model of odontogenesis. We show that it reproduces key shark-specific features of tooth development as well as real tooth shape variation in small-spotted catsharks . We validate our model by comparison with experiments in vivo. Strikingly, we observe that developmental transitions between tooth shapes tend to be highly degenerate, even for complex phenotypes. We also discover that the sets of developmental parameters involved in tooth shape transitions tend to depend asymmetrically on the direction of that transition. Together, our findings provide a valuable base for furthering our understanding of how developmental changes can lead to both adaptive phenotypic change and trait convergence in complex, phenotypically highly diverse, structures.

Keywords

References

  1. Development. 2002 Dec;129(23):5323-37 [PMID: 12403705]
  2. Dev Biol. 2003 Oct 15;262(2):195-205 [PMID: 14550785]
  3. J Exp Zool B Mol Dev Evol. 2009 Jun 15;312B(4):309-19 [PMID: 19156667]
  4. Curr Opin Genet Dev. 2000 Aug;10(4):449-56 [PMID: 11023302]
  5. Zootaxa. 2019 May 07;4601(1):zootaxa.4601.1.1 [PMID: 31717249]
  6. Biol Theory. 2015;10(1):36-49 [PMID: 25798078]
  7. Dev Biol. 2009 Oct 15;334(2):369-82 [PMID: 19647731]
  8. J Mol Histol. 2008 Feb;39(1):87-94 [PMID: 17786571]
  9. Kybernetik. 1972 Dec;12(1):30-9 [PMID: 4663624]
  10. Dev Biol. 2020 Apr 1;460(1):2-11 [PMID: 32008805]
  11. Sci Adv. 2016 Jun 24;2(6):e1600708 [PMID: 28439533]
  12. Int J Dev Biol. 2004;48(2-3):117-35 [PMID: 15272377]
  13. Development. 2009 Jul;136(13):2187-97 [PMID: 19474151]
  14. Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):9403-9408 [PMID: 28808032]
  15. J Exp Zool. 2002 Aug 15;294(2):160-76 [PMID: 12210117]
  16. J Hist Biol. 1970 Fall;3:189-212 [PMID: 11609651]
  17. Dev Biol. 1998 Apr 1;196(1):11-23 [PMID: 9527877]
  18. Mech Dev. 1996 Jan;54(1):39-43 [PMID: 8808404]
  19. Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10689-94 [PMID: 10485887]
  20. Integr Comp Biol. 2020 Sep 1;60(3):644-655 [PMID: 32663287]
  21. Trends Genet. 1999 Feb;15(2):59-65 [PMID: 10098408]
  22. Development. 2000 Apr;127(7):1431-43 [PMID: 10704389]
  23. Mech Dev. 2000 Mar 15;92(1):19-29 [PMID: 10704885]
  24. J Dev Biol. 2017 May 31;5(2): [PMID: 29615564]
  25. Semin Cell Dev Biol. 2007 Apr;18(2):255-66 [PMID: 17382566]
  26. Am J Med Genet A. 2006 Dec 1;140(23):2530-5 [PMID: 16838332]
  27. BMC Evol Biol. 2015 Dec 24;15:292 [PMID: 26704180]
  28. Semin Cell Dev Biol. 2014 Jan-Feb;25-26:11-21 [PMID: 24487243]
  29. PeerJ. 2022 Jul 4;10:e13575 [PMID: 35811817]
  30. Nature. 2010 Mar 25;464(7288):583-6 [PMID: 20220757]
  31. Theor Popul Biol. 2000 May;57(3):187-95 [PMID: 10828213]
  32. Genes Dev. 2002 Dec 15;16(24):3173-85 [PMID: 12502739]
  33. Development. 2014 Aug;141(15):3033-9 [PMID: 25053434]
  34. Proc Biol Sci. 2008 Jan 7;275(1630):91-100 [PMID: 17971325]
  35. Dev Genet. 1998;22(4):374-85 [PMID: 9664689]
  36. Development. 2017 Feb 1;144(3):374-384 [PMID: 28143844]
  37. Sci Adv. 2018 Nov 07;4(11):eaau5484 [PMID: 30417097]
  38. Phys Life Rev. 2021 Sep;38:55-106 [PMID: 34088608]
  39. Elife. 2022 May 10;11: [PMID: 35536602]
  40. Dev Biol. 2016 Jul 15;415(2):347-370 [PMID: 26845577]
  41. Evol Dev. 2013 Mar-Apr;15(2):107-18 [PMID: 25098636]
  42. Mol Syst Biol. 2010 Nov 2;6:425 [PMID: 21045819]
  43. PLoS Biol. 2017 Jul 11;15(7):e2002117 [PMID: 28700594]
  44. J Dent Res. 1999 Apr;78(4):826-34 [PMID: 10326726]
  45. Dev Biol. 1999 Dec 15;216(2):521-34 [PMID: 10642790]
  46. Science. 2010 Sep 24;329(5999):1616-20 [PMID: 20929839]
  47. Evol Dev. 2016 Jan-Feb;18(1):19-30 [PMID: 25219878]
  48. BMC Evol Biol. 2011 Oct 18;11:307 [PMID: 22008058]
  49. Curr Biol. 2001 Sep 18;11(18):R751-2 [PMID: 11566120]
  50. Evol Dev. 2004 Jan-Feb;6(1):6-16 [PMID: 15108813]
  51. Sci Rep. 2014 Dec 18;4:7549 [PMID: 25520296]
  52. Development. 1996 Oct;122(10):3035-44 [PMID: 8898217]
  53. Exp Dermatol. 2019 Apr;28(4):503-508 [PMID: 28603898]
  54. Stud Hist Philos Biol Biomed Sci. 2016 Aug;58:107-16 [PMID: 26868415]
  55. J Anat. 2020 Nov;237(5):960-978 [PMID: 32667054]
  56. Wiley Interdiscip Rev Dev Biol. 2013 Jan-Feb;2(1):97-112 [PMID: 23539312]
  57. Evolution. 2020 Feb;74(2):230-244 [PMID: 31883344]
  58. Nature. 2012 Mar 07;483(7389):324-7 [PMID: 22398444]
  59. Cell. 1997 Jul 25;90(2):247-55 [PMID: 9244299]
  60. J Theor Biol. 1982 Sep 7;98(1):143-63 [PMID: 7176665]
  61. PLoS Comput Biol. 2021 Feb 24;17(2):e1008570 [PMID: 33626036]
  62. Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19270-5 [PMID: 22084104]
  63. J Dent Res. 1967 Sep-Oct;46(5):845-50 [PMID: 5234023]
  64. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8116-20 [PMID: 12048258]
  65. Proc Natl Acad Sci U S A. 2021 Jan 5;118(1): [PMID: 33443174]
  66. Semin Cell Dev Biol. 2014 Jan-Feb;25-26:71-80 [PMID: 24406627]
  67. Development. 2003 May;130(10):2027-37 [PMID: 12668618]
  68. Evodevo. 2017 May 2;8:8 [PMID: 28469835]
  69. Nature. 2013 May 16;497(7449):361-4 [PMID: 23636325]
  70. Nature. 2014 Aug 7;512(7512):44-8 [PMID: 25079326]
  71. Nat Rev Genet. 2011 Mar;12(3):204-13 [PMID: 21331091]
  72. Int J Dev Biol. 2004;48(2-3):249-70 [PMID: 15272390]
  73. Development. 1999 Nov;126(22):4997-5009 [PMID: 10529418]
  74. J Exp Zool B Mol Dev Evol. 2006 May 15;306(3):177-82 [PMID: 16615103]
  75. J Fish Biol. 2021 Apr;98(4):906-918 [PMID: 31820456]
  76. Eur J Oral Sci. 1998 Jan;106 Suppl 1:437-81 [PMID: 9541261]
  77. Development. 2000 Nov;127(22):4775-85 [PMID: 11044393]
  78. Trends Genet. 2014 Jan;30(1):24-31 [PMID: 24070496]
  79. Curr Top Dev Biol. 2015;115:157-86 [PMID: 26589925]
  80. PLoS Comput Biol. 2018 Feb 26;14(2):e1005981 [PMID: 29481561]
  81. Development. 1998 Jan;125(2):161-9 [PMID: 9486790]
  82. Development. 2019 Oct 18;146(20): [PMID: 31628213]
  83. Int J Dev Biol. 1994 Sep;38(3):463-9 [PMID: 7848830]
  84. J R Soc Interface. 2014 Apr 09;11(95):20140249 [PMID: 24718456]

Grants

  1. ZI1809/1-629 1:1 Proj.43292263/Deutsche Forschungsgemeinschaft (DFG)
  2. PLASTICiTEETH/Agence Nationale de la Recherche (ANR)
  3. ANR-10-INBS-04/Agence Nationale de la Recherche (ANR)
  4. ANR-10-LABX-0004/Agence Nationale de la Recherche (ANR)
  5. ANR-10-LABX-0020/Agence Nationale de la Recherche (ANR)

MeSH Term

Animals
Sharks
Odontogenesis
Tooth
Phenotype
Mammals
Biological Evolution
Morphogenesis

Word Cloud

Created with Highcharts 10.0.0toothdevelopmentaltransitionsdevelopmentshapegeneralmodelfactorsphenotypescanchangechangesunderstandingdiversitymathematicaltendhighlycomplexphenotypicDevelopmentalcomplexitystemmingdynamicinterplaygeneticbiomechaniccanalizeswaysgenotypesevolutionparadigmaticsystemexploregeneratetypicalSincemainlyresearchedmammalscontributestudyingsharksendbuildrealisticodontogenesisshowreproduceskeyshark-specificfeatureswellrealvariationsmall-spottedcatsharksvalidatecomparisonexperimentsvivoStrikinglyobserveshapesdegenerateevenalsodiscoversetsparametersinvolveddependasymmetricallydirectiontransitionTogetherfindingsprovidevaluablebasefurtheringleadadaptivetraitconvergencephenotypicallydiversestructuresshark-inspiredmorphogenesisunveilsasymmetriesphenotypeevo-devomodelingmorphospace

Similar Articles

Cited By