Real-time respiratory motion prediction using photonic reservoir computing.

Zhizhuo Liang, Meng Zhang, Chengyu Shi, Z Rena Huang
Author Information
  1. Zhizhuo Liang: Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
  2. Meng Zhang: Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
  3. Chengyu Shi: City of Hope Medical Center, Duarte, CA, 91010, USA.
  4. Z Rena Huang: Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. huangz3@rpi.edu.

Abstract

Respiration induced motion is a well-recognized challenge in many clinical practices including upper body imaging, lung tumor motion tracking and radiation therapy. In this work, we present a recurrent neural network algorithm that was implemented in a photonic delay-line reservoir computer (RC) for real-time respiratory motion prediction. The respiratory motion signals are quasi-periodic waveforms subject to a variety of non-linear distortions. In this work, we demonstrated for the first time that RC can be effective in predicting short to medium range of respiratory motions within practical timescales. A double-sliding window technology is explored to enable the real-time establishment of an individually trained model for each patient and the real-time processing of live-streamed respiratory motion data. A breathing dataset from a total of 76 patients with breathing speeds ranging from 3 to 20 breaths per minute (BPM) is studied. Motion prediction of look-ahead times of 66.6, 166.6, and 333 ms are investigated. With a 333 ms look-ahead time, the real-time RC model achieves an average normalized mean square error (NMSE) of 0.025, an average mean absolute error (MAE) of 0.34 mm, an average root mean square error (RMSE) of 0.45 mm, an average therapeutic beam efficiency (TBE) of 94.14% for an absolute error (AE) < 1 mm, and 99.89% for AE < 3 mm. This study demonstrates that real-time RC is an efficient computing framework for high precision respiratory motion prediction.

References

  1. Biol Cybern. 2011 Dec;105(5-6):355-70 [PMID: 22290137]
  2. Int J Radiat Oncol Biol Phys. 2002 Jul 15;53(4):822-34 [PMID: 12095547]
  3. Nat Commun. 2011 Sep 13;2:468 [PMID: 21915110]
  4. Med Phys. 2006 Oct;33(10):3874-900 [PMID: 17089851]
  5. Sci Rep. 2012;2:287 [PMID: 22371825]
  6. Sci Rep. 2016 Mar 03;6:22381 [PMID: 26935166]
  7. Opt Express. 2018 Oct 29;26(22):29424-29439 [PMID: 30470106]
  8. Sleep. 1990 Apr;13(2):143-54 [PMID: 2330473]
  9. Phys Med Biol. 2005 Aug 21;50(16):3655-67 [PMID: 16077219]
  10. Chaos. 2017 Apr;27(4):041102 [PMID: 28456169]
  11. Radiother Oncol. 2020 Dec;153:88-96 [PMID: 32579998]
  12. Lung Cancer (Auckl). 2018 Nov 05;9:103-110 [PMID: 30464667]
  13. Nat Commun. 2014 Mar 24;5:3541 [PMID: 24662967]
  14. Med Biol Eng Comput. 2020 Mar;58(3):529-539 [PMID: 31916074]
  15. Sci Rep. 2018 May 31;8(1):8487 [PMID: 29855549]
  16. Sci Rep. 2015 Oct 08;5:14945 [PMID: 26446303]
  17. Radiother Oncol. 2020 Dec;153:79-87 [PMID: 32585236]
  18. Neural Comput. 2002 Nov;14(11):2531-60 [PMID: 12433288]
  19. J Med Internet Res. 2021 Aug 27;23(8):e27235 [PMID: 34236336]
  20. Opt Express. 2012 Sep 24;20(20):22783-95 [PMID: 23037429]
  21. Phys Med Biol. 2019 Apr 10;64(8):085010 [PMID: 30917344]
  22. Phys Med Biol. 2017 Aug 03;62(17):6822-6835 [PMID: 28665297]
  23. Sci Rep. 2019 Dec 13;9(1):19078 [PMID: 31836737]
  24. Opt Express. 2012 Jan 30;20(3):3241-9 [PMID: 22330562]
  25. Biomed Imaging Interv J. 2007 Jan;3(1):e40 [PMID: 21614265]
  26. Clin Oncol (R Coll Radiol). 2014 Feb;26(2):67-80 [PMID: 24290238]
  27. Science. 2004 Apr 2;304(5667):78-80 [PMID: 15064413]
  28. Med Phys. 2018 Feb;45(2):830-845 [PMID: 29244902]

MeSH Term

Humans
Motion
Respiration
Algorithms
Neural Networks, Computer
Lung Neoplasms
Movement

Word Cloud

Created with Highcharts 10.0.0motionrespiratoryreal-timeRCpredictionaveragemeanworkphotonicreservoirtimemodelbreathinglook-ahead6333 mssquareerror 0absoluteerrorcomputingRespirationinducedwell-recognizedchallengemanyclinicalpracticesincludingupperbodyimaginglungtumortrackingradiationtherapypresentrecurrentneuralnetworkalgorithmimplementeddelay-linecomputersignalsquasi-periodicwaveformssubjectvarietynon-lineardistortionsdemonstratedfirstcaneffectivepredictingshortmediumrangemotionswithinpracticaltimescalesdouble-slidingwindowtechnologyexploredenableestablishmentindividuallytrainedpatientprocessinglive-streameddatadatasettotal76patientsspeedsranging320breathsperminute BPMstudiedMotiontimes66166investigatedachievesnormalizedNMSE025MAE34 mmrootRMSE of 045 mmtherapeuticbeamefficiency TBE9414%AE< 1 mm9989%AE < 3 mmstudydemonstratesefficientframeworkhighprecisionReal-timeusing

Similar Articles

Cited By