Conformational cycle of human polyamine transporter ATP13A2.

Jianqiang Mu, Chenyang Xue, Lei Fu, Zongjun Yu, Minhan Nie, Mengqi Wu, Xinmeng Chen, Kun Liu, Ruiqian Bu, Ying Huang, Baisheng Yang, Jianming Han, Qianru Jiang, Kevin C Chan, Ruhong Zhou, Huilin Li, Ancheng Huang, Yong Wang, Zhongmin Liu
Author Information
  1. Jianqiang Mu: Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China.
  2. Chenyang Xue: Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China. ORCID
  3. Lei Fu: Shanghai Institute for Advanced Study, Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, 310027, Hangzhou, China.
  4. Zongjun Yu: Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China. ORCID
  5. Minhan Nie: School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, 510006, Guangzhou, China.
  6. Mengqi Wu: Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China.
  7. Xinmeng Chen: Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China.
  8. Kun Liu: Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China.
  9. Ruiqian Bu: Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China.
  10. Ying Huang: Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China.
  11. Baisheng Yang: Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China.
  12. Jianming Han: Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China.
  13. Qianru Jiang: Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China.
  14. Kevin C Chan: Shanghai Institute for Advanced Study, Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, 310027, Hangzhou, China. ORCID
  15. Ruhong Zhou: Shanghai Institute for Advanced Study, Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, 310027, Hangzhou, China. ORCID
  16. Huilin Li: School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, 510006, Guangzhou, China.
  17. Ancheng Huang: Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China. ORCID
  18. Yong Wang: Shanghai Institute for Advanced Study, Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, 310027, Hangzhou, China. yongwang_isb@zju.edu.cn. ORCID
  19. Zhongmin Liu: Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China. liuzm@sustech.edu.cn. ORCID

Abstract

Dysregulation of polyamine homeostasis strongly associates with human diseases. ATP13A2, which is mutated in juvenile-onset Parkinson's disease and autosomal recessive spastic paraplegia 78, is a transporter with a critical role in balancing the polyamine concentration between the lysosome and the cytosol. Here, to better understand human ATP13A2-mediated polyamine transport, we use single-particle cryo-electron microscopy to solve high-resolution structures of human ATP13A2 in six intermediate states, including the putative E2 structure for the P5 subfamily of the P-type ATPases. These structures comprise a nearly complete conformational cycle spanning the polyamine transport process and capture multiple substrate binding sites distributed along the transmembrane regions, suggesting a potential polyamine transport pathway. Integration of high-resolution structures, biochemical assays, and molecular dynamics simulations allows us to obtain a better understanding of the structural basis of how hATP13A2 transports polyamines, providing a mechanistic framework for ATP13A2-related diseases.

References

  1. J Chem Theory Comput. 2015 Sep 8;11(9):4486-94 [PMID: 26575938]
  2. Nat Protoc. 2015 Jun;10(6):845-58 [PMID: 25950237]
  3. Mol Cell. 2021 Nov 18;81(22):4635-4649.e8 [PMID: 34715013]
  4. Biochem Soc Trans. 2019 Oct 31;47(5):1247-1257 [PMID: 31671180]
  5. Mol Cell. 2021 Nov 18;81(22):4650-4662.e4 [PMID: 34715014]
  6. J Mol Evol. 1998 Jan;46(1):84-101 [PMID: 9419228]
  7. Biomed Res Int. 2014;2014:371256 [PMID: 25197640]
  8. Neurology. 2007 May 8;68(19):1557-62 [PMID: 17485642]
  9. Nature. 2014 Jun 5;510(7503):172-175 [PMID: 24899312]
  10. Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):12722-12727 [PMID: 30482857]
  11. Small. 2019 Sep;15(36):e1902232 [PMID: 31328877]
  12. Nat Methods. 2019 Nov;16(11):1153-1160 [PMID: 31591578]
  13. Nat Methods. 2012 Sep;9(9):853-4 [PMID: 22842542]
  14. Nat Rev Cancer. 2004 Oct;4(10):781-92 [PMID: 15510159]
  15. Int J Mol Sci. 2020 Mar 31;21(7): [PMID: 32244348]
  16. Biochem Pharmacol. 1986 Nov 15;35(22):4037-41 [PMID: 3778525]
  17. J Cell Biol. 2019 Jan 7;218(1):267-284 [PMID: 30538141]
  18. J Comput Chem. 2010 Mar;31(4):671-90 [PMID: 19575467]
  19. Nat Methods. 2017 Mar;14(3):290-296 [PMID: 28165473]
  20. Autophagy. 2012 Sep;8(9):1389-91 [PMID: 22885599]
  21. J Mol Biol. 2020 Apr 3;432(8):2462-2482 [PMID: 31682838]
  22. Clin Chim Acta. 2004 Jun;344(1-2):23-35 [PMID: 15149868]
  23. Cell Rep. 2020 Sep 29;32(13):108208 [PMID: 32997992]
  24. Science. 2020 Sep 25;369(6511): [PMID: 32973005]
  25. Nat Genet. 2006 Oct;38(10):1184-91 [PMID: 16964263]
  26. Science. 2019 Sep 13;365(6458):1149-1155 [PMID: 31416931]
  27. Curr Med Chem. 2013;20(1):47-55 [PMID: 23151002]
  28. Curr Opin Struct Biol. 2010 Aug;20(4):431-9 [PMID: 20634056]
  29. Protein Sci. 2021 Jan;30(1):70-82 [PMID: 32881101]
  30. Biophys J. 2019 Jan 8;116(1):4-11 [PMID: 30558883]
  31. Nat Commun. 2021 Jun 25;12(1):3973 [PMID: 34172751]
  32. Cell Discov. 2021 Nov 2;7(1):106 [PMID: 34728622]
  33. Med Sci (Basel). 2021 Jun 09;9(2): [PMID: 34207607]
  34. Med Sci (Basel). 2021 May 13;9(2): [PMID: 34068137]
  35. J Struct Biol. 2005 Oct;152(1):36-51 [PMID: 16182563]
  36. Nucleic Acids Res. 2018 Jul 2;46(W1):W363-W367 [PMID: 29860391]
  37. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 [PMID: 15572765]
  38. J Biol Chem. 2021 Jan-Jun;296:100182 [PMID: 33310703]
  39. J Neurosci. 2012 Mar 21;32(12):4240-6 [PMID: 22442086]
  40. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 [PMID: 20124702]
  41. J Chem Theory Comput. 2015 May 12;11(5):2144-55 [PMID: 26574417]
  42. Elife. 2020 Dec 15;9: [PMID: 33320091]
  43. Nature. 2017 May 11;545(7653):193-198 [PMID: 28467821]
  44. Science. 2018 Jan 26;359(6374): [PMID: 29371440]
  45. J Struct Biol. 2003 Jun;142(3):334-47 [PMID: 12781660]
  46. Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9611-6 [PMID: 22647602]
  47. Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):9040-5 [PMID: 26134396]
  48. Nat Methods. 2017 Apr;14(4):331-332 [PMID: 28250466]
  49. Hum Mol Genet. 2014 Jun 1;23(11):2791-801 [PMID: 24334770]
  50. Mol Cell. 2021 Dec 2;81(23):4799-4809.e5 [PMID: 34798056]
  51. Nat Rev Mol Cell Biol. 2004 Apr;5(4):282-95 [PMID: 15071553]
  52. J Chem Phys. 2007 Jan 7;126(1):014101 [PMID: 17212484]
  53. Brain. 2017 Feb;140(2):287-305 [PMID: 28137957]
  54. Nat Methods. 2017 Jan;14(1):71-73 [PMID: 27819658]
  55. Nature. 2017 Nov 16;551(7680):346-351 [PMID: 29144454]
  56. Zygote. 2017 Jun;25(3):244-255 [PMID: 28587687]
  57. Nature. 2020 Feb;578(7795):419-424 [PMID: 31996848]
  58. Rapid Commun Mass Spectrom. 2007;21(18):2985-91 [PMID: 17702057]
  59. Nat Genet. 2009 Mar;41(3):308-15 [PMID: 19182805]
  60. J Chem Theory Comput. 2013 Jan 8;9(1):687-97 [PMID: 26589065]

MeSH Term

Humans
Polyamines
Proton-Translocating ATPases
Cryoelectron Microscopy
Parkinsonian Disorders
Membrane Transport Proteins

Chemicals

Polyamines
Proton-Translocating ATPases
Membrane Transport Proteins
ATP13A2 protein, human

Word Cloud

Created with Highcharts 10.0.0polyaminehumanATP13A2transportstructuresdiseasestransporterbetterhigh-resolutioncycleDysregulationhomeostasisstronglyassociatesmutatedjuvenile-onsetParkinson'sdiseaseautosomalrecessivespasticparaplegia78criticalrolebalancingconcentrationlysosomecytosolunderstandATP13A2-mediatedusesingle-particlecryo-electronmicroscopysolvesixintermediatestatesincludingputativeE2structureP5subfamilyP-typeATPasescomprisenearlycompleteconformationalspanningprocesscapturemultiplesubstratebindingsitesdistributedalongtransmembraneregionssuggestingpotentialpathwayIntegrationbiochemicalassaysmoleculardynamicssimulationsallowsusobtainunderstandingstructuralbasishATP13A2transportspolyaminesprovidingmechanisticframeworkATP13A2-relatedConformational

Similar Articles

Cited By