Synthesis of functionalized 2,3-diaminopropionates and their potential for directed monobactam biosynthesis.
Michael S Lichstrahl, Lukas Kahlert, Rongfeng Li, Trevor A Zandi, Jerry Yang, Craig A Townsend
Author Information
Michael S Lichstrahl: Department of Chemistry, The Johns Hopkins University 3400 N Charles St Baltimore MD USA ctownsend@jhu.edu. ORCID
Lukas Kahlert: Department of Chemistry, The Johns Hopkins University 3400 N Charles St Baltimore MD USA ctownsend@jhu.edu. ORCID
Rongfeng Li: Department of Chemistry, The Johns Hopkins University 3400 N Charles St Baltimore MD USA ctownsend@jhu.edu. ORCID
Trevor A Zandi: Novartis Institutes for Biomedical Research Cambridge MA USA. ORCID
Jerry Yang: Department of Chemistry, The Johns Hopkins University 3400 N Charles St Baltimore MD USA ctownsend@jhu.edu.
Craig A Townsend: Department of Chemistry, The Johns Hopkins University 3400 N Charles St Baltimore MD USA ctownsend@jhu.edu. ORCID
中文译文
English
The -sulfonated monobactams harbor considerable potential to combat emerging bacterial infections that are problematic to treat due to their metallo-β-lactamase mediated resistance against conventional β-lactam antibiotics. Herein, we report a divergent synthesis of C3-substituted 2,3-diaminopropionates featuring an array of small functional groups and examine their potential as alternative precursors during monobactam biosynthesis in a mutant strain () of that is deficient in the supply of this native precursor. assays revealed high diastereoselectivity, as well as a substrate tolerance by the terminal adenylation domain of the non-ribosomal peptide synthetase (NRPS) SulM toward the majority of synthetic analogs. Chemical complementation of this mutant yielded a fluorinated, bioactive monobactam through fermentation as confirmed by a combination of spectrometric data and microbiological assays. This study demonstrates site-specific functionalization of a clinically important natural product and sets in place a platform for further strain improvements and engineered NRPS-biosynthesis of non-native congeners.
Chem Soc Rev. 2014 Sep 21;43(18):6527-36
[PMID: 24776946 ]
Org Lett. 2010 Oct 1;12(19):4244-7
[PMID: 20812750 ]
Methods Enzymol. 2009;458:431-57
[PMID: 19374993 ]
Angew Chem Int Ed Engl. 2002 Sep 16;41(18):3383-5
[PMID: 12298039 ]
Chem Sci. 2018 Apr 10;9(17):4109-4117
[PMID: 29780540 ]
J Antibiot (Tokyo). 1981 Jun;34(6):621-7
[PMID: 7024230 ]
J Am Chem Soc. 2004 May 19;126(19):5942-3
[PMID: 15137740 ]
Antimicrob Agents Chemother. 1985 May;27(5):821-7
[PMID: 3874598 ]
Bioorg Med Chem Lett. 2018 Feb 15;28(4):748-755
[PMID: 29336873 ]
Cell Chem Biol. 2016 Apr 21;23(4):462-71
[PMID: 27105282 ]
Curr Opin Chem Biol. 2016 Dec;35:97-108
[PMID: 27693891 ]
Anal Sci. 2013;29(11):1095-8
[PMID: 24212737 ]
J Antibiot (Tokyo). 1982 Feb;35(2):189-95
[PMID: 7076565 ]
Angew Chem Int Ed Engl. 2005 Jul 25;44(30):4757-60
[PMID: 15977283 ]
Chem Rev. 2005 Aug;105(8):3167-96
[PMID: 16092828 ]
Nature. 1981 Jun 11;291(5815):489-91
[PMID: 7015152 ]
Antimicrob Agents Chemother. 2019 Jun 24;63(7):
[PMID: 31061156 ]
Cell Chem Biol. 2020 Dec 17;27(12):1532-1543.e6
[PMID: 33186541 ]
Nat Chem. 2018 Mar;10(3):282-287
[PMID: 29461527 ]
Antimicrob Agents Chemother. 1974 Jan;5(1):38-48
[PMID: 4599124 ]
J Antibiot (Tokyo). 1975 Sep;28(9):668-75
[PMID: 810468 ]
Nat Chem Biol. 2018 Jan;14(1):5-7
[PMID: 29155429 ]
Chem Biol. 1999 Aug;6(8):493-505
[PMID: 10421756 ]
Chembiochem. 2009 Mar 2;10(4):671-82
[PMID: 19189362 ]
Nat Chem Biol. 2022 Aug;18(8):886-893
[PMID: 35817967 ]
Nat Chem. 2022 Sep;14(9):1000-1006
[PMID: 35879443 ]
Methods Mol Biol. 2016;1401:77-84
[PMID: 26831702 ]
Chem Biol. 2000 Mar;7(3):211-24
[PMID: 10712928 ]
Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2509-14
[PMID: 10688898 ]
Antimicrob Agents Chemother. 1972 Apr;1(4):283-8
[PMID: 4208895 ]
Clin Microbiol Rev. 2020 Feb 26;33(2):
[PMID: 32102899 ]
J Antibiot (Tokyo). 1976 May;29(5):492-500
[PMID: 956036 ]
Methods Mol Biol. 2016;1401:53-61
[PMID: 26831700 ]
Cell Chem Biol. 2017 Jan 19;24(1):24-34
[PMID: 28017601 ]
J Bacteriol. 1995 Jun;177(12):3504-11
[PMID: 7768860 ]
Chem Biol. 2002 Nov;9(11):1175-87
[PMID: 12445768 ]
Anal Biochem. 2015 May 15;477:89-91
[PMID: 25615416 ]
Angew Chem Int Ed Engl. 2014 Sep 15;53(38):10105-8
[PMID: 25081643 ]
Antimicrob Agents Chemother. 1982 Jan;21(1):85-92
[PMID: 6979307 ]
Chemistry. 2020 Oct 27;26(60):13578-13583
[PMID: 32484589 ]
Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4884-7
[PMID: 1534409 ]
ACS Infect Dis. 2021 Sep 10;7(9):2697-2706
[PMID: 34355567 ]
Chem Soc Rev. 2008 Feb;37(2):320-30
[PMID: 18197348 ]
Proc Natl Acad Sci U S A. 1969 May;63(1):198-204
[PMID: 5257963 ]
J Antibiot (Tokyo). 1988 Jan;41(1):7-12
[PMID: 3346195 ]
Anal Biochem. 2010 Sep 1;404(1):56-63
[PMID: 20450872 ]
Chem Rev. 2011 Feb 9;111(2):PR1-42
[PMID: 21306179 ]
Microb Cell Fact. 2016 May 06;15:77
[PMID: 27154005 ]
Antimicrob Agents Chemother. 2007 Mar;51(3):1028-37
[PMID: 17220414 ]
Rev Infect Dis. 1985 Nov-Dec;7 Suppl 4:S579-93
[PMID: 3909315 ]
R01 AI121072/NIAID NIH HHS