Synthesis of functionalized 2,3-diaminopropionates and their potential for directed monobactam biosynthesis.

Michael S Lichstrahl, Lukas Kahlert, Rongfeng Li, Trevor A Zandi, Jerry Yang, Craig A Townsend
Author Information
  1. Michael S Lichstrahl: Department of Chemistry, The Johns Hopkins University 3400 N Charles St Baltimore MD USA ctownsend@jhu.edu. ORCID
  2. Lukas Kahlert: Department of Chemistry, The Johns Hopkins University 3400 N Charles St Baltimore MD USA ctownsend@jhu.edu. ORCID
  3. Rongfeng Li: Department of Chemistry, The Johns Hopkins University 3400 N Charles St Baltimore MD USA ctownsend@jhu.edu. ORCID
  4. Trevor A Zandi: Novartis Institutes for Biomedical Research Cambridge MA USA. ORCID
  5. Jerry Yang: Department of Chemistry, The Johns Hopkins University 3400 N Charles St Baltimore MD USA ctownsend@jhu.edu.
  6. Craig A Townsend: Department of Chemistry, The Johns Hopkins University 3400 N Charles St Baltimore MD USA ctownsend@jhu.edu. ORCID

Abstract

The -sulfonated monobactams harbor considerable potential to combat emerging bacterial infections that are problematic to treat due to their metallo-β-lactamase mediated resistance against conventional β-lactam antibiotics. Herein, we report a divergent synthesis of C3-substituted 2,3-diaminopropionates featuring an array of small functional groups and examine their potential as alternative precursors during monobactam biosynthesis in a mutant strain () of that is deficient in the supply of this native precursor. assays revealed high diastereoselectivity, as well as a substrate tolerance by the terminal adenylation domain of the non-ribosomal peptide synthetase (NRPS) SulM toward the majority of synthetic analogs. Chemical complementation of this mutant yielded a fluorinated, bioactive monobactam through fermentation as confirmed by a combination of spectrometric data and microbiological assays. This study demonstrates site-specific functionalization of a clinically important natural product and sets in place a platform for further strain improvements and engineered NRPS-biosynthesis of non-native congeners.

References

  1. Chem Soc Rev. 2014 Sep 21;43(18):6527-36 [PMID: 24776946]
  2. Org Lett. 2010 Oct 1;12(19):4244-7 [PMID: 20812750]
  3. Methods Enzymol. 2009;458:431-57 [PMID: 19374993]
  4. Angew Chem Int Ed Engl. 2002 Sep 16;41(18):3383-5 [PMID: 12298039]
  5. Chem Sci. 2018 Apr 10;9(17):4109-4117 [PMID: 29780540]
  6. J Antibiot (Tokyo). 1981 Jun;34(6):621-7 [PMID: 7024230]
  7. J Am Chem Soc. 2004 May 19;126(19):5942-3 [PMID: 15137740]
  8. Antimicrob Agents Chemother. 1985 May;27(5):821-7 [PMID: 3874598]
  9. Bioorg Med Chem Lett. 2018 Feb 15;28(4):748-755 [PMID: 29336873]
  10. Cell Chem Biol. 2016 Apr 21;23(4):462-71 [PMID: 27105282]
  11. Curr Opin Chem Biol. 2016 Dec;35:97-108 [PMID: 27693891]
  12. Anal Sci. 2013;29(11):1095-8 [PMID: 24212737]
  13. J Antibiot (Tokyo). 1982 Feb;35(2):189-95 [PMID: 7076565]
  14. Angew Chem Int Ed Engl. 2005 Jul 25;44(30):4757-60 [PMID: 15977283]
  15. Chem Rev. 2005 Aug;105(8):3167-96 [PMID: 16092828]
  16. Nature. 1981 Jun 11;291(5815):489-91 [PMID: 7015152]
  17. Antimicrob Agents Chemother. 2019 Jun 24;63(7): [PMID: 31061156]
  18. Cell Chem Biol. 2020 Dec 17;27(12):1532-1543.e6 [PMID: 33186541]
  19. Nat Chem. 2018 Mar;10(3):282-287 [PMID: 29461527]
  20. Antimicrob Agents Chemother. 1974 Jan;5(1):38-48 [PMID: 4599124]
  21. J Antibiot (Tokyo). 1975 Sep;28(9):668-75 [PMID: 810468]
  22. Nat Chem Biol. 2018 Jan;14(1):5-7 [PMID: 29155429]
  23. Chem Biol. 1999 Aug;6(8):493-505 [PMID: 10421756]
  24. Chembiochem. 2009 Mar 2;10(4):671-82 [PMID: 19189362]
  25. Nat Chem Biol. 2022 Aug;18(8):886-893 [PMID: 35817967]
  26. Nat Chem. 2022 Sep;14(9):1000-1006 [PMID: 35879443]
  27. Methods Mol Biol. 2016;1401:77-84 [PMID: 26831702]
  28. Chem Biol. 2000 Mar;7(3):211-24 [PMID: 10712928]
  29. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2509-14 [PMID: 10688898]
  30. Antimicrob Agents Chemother. 1972 Apr;1(4):283-8 [PMID: 4208895]
  31. Clin Microbiol Rev. 2020 Feb 26;33(2): [PMID: 32102899]
  32. J Antibiot (Tokyo). 1976 May;29(5):492-500 [PMID: 956036]
  33. Methods Mol Biol. 2016;1401:53-61 [PMID: 26831700]
  34. Cell Chem Biol. 2017 Jan 19;24(1):24-34 [PMID: 28017601]
  35. J Bacteriol. 1995 Jun;177(12):3504-11 [PMID: 7768860]
  36. Chem Biol. 2002 Nov;9(11):1175-87 [PMID: 12445768]
  37. Anal Biochem. 2015 May 15;477:89-91 [PMID: 25615416]
  38. Angew Chem Int Ed Engl. 2014 Sep 15;53(38):10105-8 [PMID: 25081643]
  39. Antimicrob Agents Chemother. 1982 Jan;21(1):85-92 [PMID: 6979307]
  40. Chemistry. 2020 Oct 27;26(60):13578-13583 [PMID: 32484589]
  41. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4884-7 [PMID: 1534409]
  42. ACS Infect Dis. 2021 Sep 10;7(9):2697-2706 [PMID: 34355567]
  43. Chem Soc Rev. 2008 Feb;37(2):320-30 [PMID: 18197348]
  44. Proc Natl Acad Sci U S A. 1969 May;63(1):198-204 [PMID: 5257963]
  45. J Antibiot (Tokyo). 1988 Jan;41(1):7-12 [PMID: 3346195]
  46. Anal Biochem. 2010 Sep 1;404(1):56-63 [PMID: 20450872]
  47. Chem Rev. 2011 Feb 9;111(2):PR1-42 [PMID: 21306179]
  48. Microb Cell Fact. 2016 May 06;15:77 [PMID: 27154005]
  49. Antimicrob Agents Chemother. 2007 Mar;51(3):1028-37 [PMID: 17220414]
  50. Rev Infect Dis. 1985 Nov-Dec;7 Suppl 4:S579-93 [PMID: 3909315]

Grants

  1. R01 AI121072/NIAID NIH HHS

Word Cloud

Created with Highcharts 10.0.0potentialmonobactam23-diaminopropionatesbiosynthesismutantstrainassays-sulfonatedmonobactamsharborconsiderablecombatemergingbacterialinfectionsproblematictreatduemetallo-β-lactamasemediatedresistanceconventionalβ-lactamantibioticsHereinreportdivergentsynthesisC3-substitutedfeaturingarraysmallfunctionalgroupsexaminealternativeprecursorsdeficientsupplynativeprecursorrevealedhighdiastereoselectivitywellsubstratetoleranceterminaladenylationdomainnon-ribosomalpeptidesynthetaseNRPSSulMtowardmajoritysyntheticanalogsChemicalcomplementationyieldedfluorinatedbioactivefermentationconfirmedcombinationspectrometricdatamicrobiologicalstudydemonstratessite-specificfunctionalizationclinicallyimportantnaturalproductsetsplaceplatformimprovementsengineeredNRPS-biosynthesisnon-nativecongenersSynthesisfunctionalizeddirected

Similar Articles

Cited By