A non-parametric Bayesian approach for adjusting partial compliance in sequential decision making.

Indrabati Bhattacharya, Brent A Johnson, William J Artman, Andrew Wilson, Kevin G Lynch, James R McKay, Ashkan Ertefaie
Author Information
  1. Indrabati Bhattacharya: Department of Statistics, Florida State University, Tallahassee, Florida, USA. ORCID
  2. Brent A Johnson: Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA.
  3. William J Artman: Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA. ORCID
  4. Andrew Wilson: Courant Institute of Mathematical Sciences, New York University, New York, New York, USA.
  5. Kevin G Lynch: Center for Clinical Epidemiology and Biostatistics and Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
  6. James R McKay: Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
  7. Ashkan Ertefaie: Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA. ORCID

Abstract

Existing methods for estimating the mean outcome under a given sequential treatment rule often rely on intention-to-treat analyses, which estimate the effect of following a certain treatment rule regardless of compliance behavior of patients. There are two major concerns with intention-to-treat analyses: (1) the estimated effects are often biased toward the null effect; (2) the results are not generalizable and reproducible due to the potentially differential compliance behavior. These are particularly problematic in settings with a high level of non-compliance, such as substance use disorder studies. Our work is motivated by the Adaptive Treatment for Alcohol and Cocaine Dependence study (ENGAGE), which is a multi-stage trial that aimed to construct optimal treatment strategies to engage patients in therapy. Due to the relatively low level of compliance in this trial, intention-to-treat analyses essentially estimate the effect of being randomized to a certain treatment, instead of the actual effect of the treatment. We obviate this challenge by defining the target parameter as the mean outcome under a dynamic treatment regime conditional on a potential compliance stratum. We propose a flexible non-parametric Bayesian approach based on principal stratification, which consists of a Gaussian copula model for the joint distribution of the potential compliances, and a Dirichlet process mixture model for the treatment sequence specific outcomes. We conduct extensive simulation studies which highlight the utility of our approach in the context of multi-stage randomized trials. We show robustness of our estimator to non-linear and non-Gaussian settings as well.

Keywords

References

  1. Br J Clin Pharmacol. 2002 Aug;54(2):203-11 [PMID: 12207643]
  2. J Subst Abuse Treat. 2017 Apr;75:54-61 [PMID: 28237055]
  3. Int J Biostat. 2010;6(2):Article 8 [PMID: 21969994]
  4. Am J Epidemiol. 2015 Feb 1;181(3):191-7 [PMID: 25609096]
  5. J Am Stat Assoc. 2021;116(533):174-191 [PMID: 33731969]
  6. Biostatistics. 2016 Jan;17(1):135-48 [PMID: 26243172]
  7. Int J Biostat. 2008 Oct 19;4(1):Article 22 [PMID: 20231914]
  8. Biometrics. 2002 Mar;58(1):21-9 [PMID: 11890317]
  9. J Am Stat Assoc. 2021;116(533):162-173 [PMID: 33994604]
  10. Epidemiology. 2000 Sep;11(5):550-60 [PMID: 10955408]
  11. Stat Med. 2008 Aug 30;27(19):3689-716 [PMID: 18407580]
  12. Int J Biostat. 2010;6(2):Article 19 [PMID: 21731532]
  13. Stat Med. 2022 Apr 30;41(9):1688-1708 [PMID: 35124836]
  14. J Am Stat Assoc. 2001 Dec 1;96(456):1410-1423 [PMID: 20019887]
  15. Int J Biostat. 2007;3(1):Article 3 [PMID: 19122793]
  16. BMJ. 2002 Sep 21;325(7365):652-4 [PMID: 12242181]
  17. Biometrics. 2009 Jun;65(2):514-20 [PMID: 18759834]
  18. Int J Biostat. 2016 May 1;12(1):219-32 [PMID: 27227722]
  19. Epidemiology. 2016 Mar;27(2):e5-7 [PMID: 26628427]
  20. Stat Med. 2008 Oct 15;27(23):4678-721 [PMID: 18646286]
  21. J Consult Clin Psychol. 2015 Dec;83(6):1021-32 [PMID: 26214544]
  22. Ann Stat. 2016 Apr;44(2):713-742 [PMID: 30662101]
  23. BMJ. 1999 Sep 11;319(7211):670-4 [PMID: 10480822]

Grants

  1. R01 DA048764/NIDA NIH HHS
  2. R21 AA027571/NIAAA NIH HHS
  3. R61 NS120240/NINDS NIH HHS

MeSH Term

Humans
Bayes Theorem
Computer Simulation
Treatment Outcome
Patient Compliance
Decision Making

Word Cloud

Created with Highcharts 10.0.0treatmentcomplianceeffectintention-to-treatapproachmeanoutcomesequentialruleoftenanalysesestimatecertainbehaviorpatientssettingslevelstudiesmulti-stagetrialrandomizeddynamicregimepotentialnon-parametricBayesianGaussiancopulamodelDirichletprocessmixturepartialExistingmethodsestimatinggivenrelyfollowingregardlesstwomajorconcernsanalyses:1estimatedeffectsbiasedtowardnull2resultsgeneralizablereproducibleduepotentiallydifferentialparticularlyproblematichighnon-compliancesubstanceusedisorderworkmotivatedAdaptiveTreatmentAlcoholCocaineDependencestudyENGAGEaimedconstructoptimalstrategiesengagetherapyDuerelativelylowessentiallyinsteadactualobviatechallengedefiningtargetparameterconditionalstratumproposeflexiblebasedprincipalstratificationconsistsjointdistributioncompliancessequencespecificoutcomesconductextensivesimulationhighlightutilitycontexttrialsshowrobustnessestimatornon-linearnon-GaussianwelladjustingdecisionmakingSMART

Similar Articles

Cited By