Prevalence and resistance to antibacterial agents in strains isolated from poultry products in Northern Kazakhstan.

Anara Mendybayeva, Zulkyya Abilova, Aitbay Bulashev, Raushan Rychshanova
Author Information
  1. Anara Mendybayeva: Research Institute of Applied Biotechnology, A. Baitursynov Kostanay Regional University, Kostanay, Kazakhstan.
  2. Zulkyya Abilova: Department of Veterinary Medicine, A. Baitursynov Kostanay Regional University, Kostanay, Kazakhstan.
  3. Aitbay Bulashev: Department of Microbiology and Biotechnology, S. Seifullin Kazakh Agrotechnical University, Astana, Kazakhstan.
  4. Raushan Rychshanova: Research Institute of Applied Biotechnology, A. Baitursynov Kostanay Regional University, Kostanay, Kazakhstan.

Abstract

Background and Aim: is one of the main causative agents of foodborne infections. The source of the pathogen, in most cases, is poultry products. The intensification of poultry farming and the constant and uncontrolled use of antimicrobials has led to an increase in the level of antibiotic resistance, especially in developing countries. This study aimed to determine the level of sensitivity to antimicrobial agents in strains isolated from poultry products in Northern Kazakhstan, as well as to determine the genetic mechanisms of resistance and the presence of integrons.
Materials and Methods: In total, 398 samples of poultry products sold in Northern Kazakhstan were selected. strains were isolated from product samples using microbiological methods. was identified based on morphological, biochemical, and serological methods, as well as polymerase chain reaction (PCR). Sensitivity testing for antimicrobial agents was performed using the disk diffusion method. The detection of resistance genes was performed using PCR and gel electrophoresis.
Results: Out of 398 samples of poultry products, a total of 46 isolates were obtained. Most of the isolates belong to the serovar Enteritidis (80.4%). The assessment of sensitivity to antibacterial agents showed that was mainly resistant to nalidixic acid (63%), furadonin (60.9%), ofloxacin (45.6%), and tetracycline (39.1%). In 64.3% of cases, was resistant to three or more groups of antibacterial agents. Resistance genes such as A, B, TEM, A, 3, and II, as well as integrons of two classes (1 and 2), were identified.
Conclusion: Poultry products contain antimicrobial-resistant strains of , as well as genes encoding resistance mechanisms. The results emphasize the need for constant monitoring of not only pathogenic microorganisms but also their sensitivity to antimicrobial agents. The potential threat to human health requires a unified approach to the problem of antibiotic resistance from representatives of both public health and the agroindustrial complex.

Keywords

References

  1. J Antimicrob Chemother. 2002 Oct;50(4):513-6 [PMID: 12356795]
  2. Vet World. 2019;12(4):504-521 [PMID: 31190705]
  3. Antibiotics (Basel). 2021 Jun 28;10(7): [PMID: 34203245]
  4. Poult Sci. 2014 Feb;93(2):335-9 [PMID: 24570454]
  5. Iran J Microbiol. 2018 Feb;10(1):45-50 [PMID: 29922418]
  6. Poult Sci. 2021 Feb;100(2):1016-1023 [PMID: 33518060]
  7. Front Microbiol. 2018 Jan 11;8:2697 [PMID: 29379488]
  8. Poult Sci. 2012 Sep;91(9):2370-5 [PMID: 22912475]
  9. J Vet Med Sci. 2008 Jun;70(6):595-601 [PMID: 18628600]
  10. Clin Microbiol Infect. 2014 Apr;20(4):O255-66 [PMID: 24131428]
  11. Microorganisms. 2022 Jan 28;10(2): [PMID: 35208768]
  12. Pathogens. 2020 Mar 09;9(3): [PMID: 32182918]
  13. Infect Drug Resist. 2018 Dec 21;12:45-54 [PMID: 30613156]
  14. Foodborne Pathog Dis. 2020 Aug;17(8):479-484 [PMID: 31990586]
  15. Front Microbiol. 2018 Mar 27;9:592 [PMID: 29636749]
  16. J Glob Antimicrob Resist. 2018 Sep;14:202-208 [PMID: 29684574]
  17. Antimicrob Agents Chemother. 2008 Aug;52(8):2992-3 [PMID: 18490500]
  18. Foods. 2021 Nov 10;10(11): [PMID: 34829037]
  19. Antibiotics (Basel). 2021 Dec 21;11(1): [PMID: 35052878]
  20. Microb Drug Resist. 2004 Summer;10(2):83-91 [PMID: 15256022]
  21. BMC Vet Res. 2019 Apr 27;15(1):124 [PMID: 31029108]
  22. Anim Front. 2018 Apr 19;8(2):30-37 [PMID: 32002216]
  23. Vet World. 2021 Jul;14(7):1767-1773 [PMID: 34475696]
  24. Poult Sci. 2020 Feb;99(2):1117-1123 [PMID: 32029147]
  25. Pathogens. 2021 Dec 10;10(12): [PMID: 34959570]
  26. Cell. 2021 Apr 15;184(8):2053-2067.e18 [PMID: 33794144]
  27. PLoS One. 2014 May 02;9(5):e96050 [PMID: 24788434]
  28. Vet World. 2017 Oct;10(10):1167-1172 [PMID: 29184361]
  29. Antimicrob Agents Chemother. 2004 Aug;48(8):2808-15 [PMID: 15273085]
  30. J Antimicrob Chemother. 2006 May;57(5):975-8 [PMID: 16510850]
  31. Poult Sci. 2013 Nov;92(11):3036-43 [PMID: 24135609]
  32. Microorganisms. 2020 Aug 12;8(8): [PMID: 32806643]
  33. Burns. 2012 Dec;38(8):1198-203 [PMID: 22579564]
  34. Foodborne Pathog Dis. 2015 Jan;12(1):32-8 [PMID: 25587926]
  35. Animals (Basel). 2021 Mar 18;11(3): [PMID: 33803844]
  36. Front Cell Infect Microbiol. 2019 May 31;9:187 [PMID: 31214517]
  37. Antimicrob Agents Chemother. 2006 Aug;50(8):2872-4 [PMID: 16870791]
  38. Poult Sci. 2019 Nov 1;98(11):5416-5423 [PMID: 31350992]
  39. Appl Environ Microbiol. 2016 Jul 15;82(15):4767-4775 [PMID: 27235436]
  40. Poult Sci. 2018 Apr 1;97(4):1373-1381 [PMID: 29365208]
  41. Int J Food Microbiol. 2017 Oct 16;259:43-51 [PMID: 28800411]
  42. J Food Prot. 2013 Mar;76(3):394-404 [PMID: 23462075]
  43. Ann Lab Med. 2012 Mar;32(2):119-25 [PMID: 22389878]
  44. Antimicrob Agents Chemother. 2003 Mar;47(3):1169-72 [PMID: 12604565]
  45. Res Microbiol. 2014 Sep;165(7):526-30 [PMID: 25049166]
  46. EFSA J. 2018 Dec 12;16(12):e05500 [PMID: 32625785]
  47. J Antimicrob Chemother. 2002 Jul;50(1):11-8 [PMID: 12096001]
  48. Microbiol Immunol. 2007;51(1):111-5 [PMID: 17237606]
  49. Clin Microbiol Infect. 2016 Feb;22(2):110-121 [PMID: 26708671]
  50. Epidemiol Infect. 2002 Aug;129(1):1-8 [PMID: 12211575]
  51. Euro Surveill. 2014 May 15;19(19): [PMID: 24852953]
  52. Asian Pac J Trop Med. 2012 Sep;5(9):709-12 [PMID: 22805722]

Word Cloud

Created with Highcharts 10.0.0resistanceagentspoultryproductsstrainswellgenesantibioticsensitivityantimicrobialisolatedNorthernKazakhstansamplesusingantibacterialcasesconstantleveldeterminemechanismsintegronstotal398methodsidentifiedPCRperformedisolatesresistanthealthBackgroundAim:onemaincausativefoodborneinfectionssourcepathogenintensificationfarminguncontrolleduseantimicrobialsledincreaseespeciallydevelopingcountriesstudyaimedgeneticpresenceMaterialsMethods:soldselectedproductmicrobiologicalbasedmorphologicalbiochemicalserologicalpolymerasechainreactionSensitivitytestingdiskdiffusionmethoddetectiongelelectrophoresisResults:46obtainedbelongserovarEnteritidis804%assessmentshowedmainlynalidixicacid63%furadonin609%ofloxacin456%tetracycline391%643%threegroupsResistanceBTEM3IItwoclasses12Conclusion:Poultrycontainantimicrobial-resistantencodingresultsemphasizeneedmonitoringpathogenicmicroorganismsalsopotentialthreathumanrequiresunifiedapproachproblemrepresentativespublicagroindustrialcomplexPrevalenceSalmonellafoodsafety

Similar Articles

Cited By