Cheminformatics-Based Study Identifies Potential Ebola VP40 Inhibitors.

Emmanuel Broni, Carolyn Ashley, Joseph Adams, Hammond Manu, Ebenezer Aikins, Mary Okom, Whelton A Miller, Michael D Wilson, Samuel K Kwofie
Author Information
  1. Emmanuel Broni: Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana. ORCID
  2. Carolyn Ashley: Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA.
  3. Joseph Adams: Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana.
  4. Hammond Manu: Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana.
  5. Ebenezer Aikins: Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana.
  6. Mary Okom: Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana.
  7. Whelton A Miller: Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA. ORCID
  8. Michael D Wilson: Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana. ORCID
  9. Samuel K Kwofie: Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana. ORCID

Abstract

The Ebola virus (EBOV) is still highly infectious and causes severe hemorrhagic fevers in primates. However, there are no regulatorily approved drugs against the Ebola virus disease (EVD). The highly virulent and lethal nature of EVD highlights the need to develop therapeutic agents. Viral protein 40 kDa (VP40), the most abundantly expressed protein during infection, coordinates the assembly, budding, and release of viral particles into the host cell. It also regulates viral transcription and RNA replication. This study sought to identify small molecules that could potentially inhibit the VP40 protein by targeting the N-terminal domain using an in silico approach. The statistical quality of AutoDock Vina's capacity to discriminate between inhibitors and decoys was determined, and an area under the curve of the receiver operating characteristic (AUC-ROC) curve of 0.791 was obtained. A total of 29,519 natural-product-derived compounds from Chinese and African sources as well as 2738 approved drugs were successfully screened against VP40. Using a threshold of -8 kcal/mol, a total of 7, 11, 163, and 30 compounds from the AfroDb, Northern African Natural Products Database (NANPDB), traditional Chinese medicine (TCM), and approved drugs libraries, respectively, were obtained after molecular docking. A biological activity prediction of the lead compounds suggested their potential antiviral properties. In addition, random-forest- and support-vector-machine-based algorithms predicted the compounds to be anti-Ebola with IC values in the micromolar range (less than 25 μM). A total of 42 natural-product-derived compounds were identified as potential EBOV inhibitors with desirable ADMET profiles, comprising 1, 2, and 39 compounds from NANPDB (2-hydroxyseneganolide), AfroDb (ZINC000034518176 and ZINC000095485942), and TCM, respectively. A total of 23 approved drugs, including doramectin, glecaprevir, velpatasvir, ledipasvir, avermectin B1, nafarelin acetate, danoprevir, eltrombopag, lanatoside C, and glycyrrhizin, among others, were also predicted to have potential anti-EBOV activity and can be further explored so that they may be repurposed for EVD treatment. Molecular dynamics simulations coupled with molecular mechanics Poisson-Boltzmann surface area calculations corroborated the stability and good binding affinities of the complexes (-46.97 to -118.9 kJ/mol). The potential lead compounds may have the potential to be developed as anti-EBOV drugs after experimental testing.

Keywords

References

  1. PLoS One. 2011 Jan 06;6(1):e15939 [PMID: 21253603]
  2. J Ginseng Res. 2013 Mar;37(1):80-6 [PMID: 23717160]
  3. J Hematol Oncol. 2015 Nov 20;8:129 [PMID: 26589495]
  4. Nucleic Acids Res. 2016 Jan 4;44(D1):D1202-13 [PMID: 26400175]
  5. Pathogens. 2020 May 22;9(5): [PMID: 32455873]
  6. Int J Antimicrob Agents. 2019 Nov;54(5):601-609 [PMID: 31356859]
  7. J Comput Chem. 2005 Dec;26(16):1701-18 [PMID: 16211538]
  8. Comput Biol Med. 2019 Oct;113:103414 [PMID: 31536833]
  9. Nucleic Acids Res. 2019 Jan 8;47(D1):D1102-D1109 [PMID: 30371825]
  10. Vet Parasitol. 2013 Dec 6;198(3-4):406-9 [PMID: 24140165]
  11. Biophys J. 2012 Jun 6;102(11):2517-25 [PMID: 22713567]
  12. Drug Des Devel Ther. 2020 Jul 14;14:2759-2774 [PMID: 32764876]
  13. World J Gastroenterol. 2009 Dec 7;15(45):5669-73 [PMID: 19960563]
  14. Expert Opin Investig Drugs. 2021 Mar;30(3):201-226 [PMID: 33593215]
  15. J Chem Inf Comput Sci. 2003 Jan-Feb;43(1):228-36 [PMID: 12546557]
  16. Virology. 2001 Apr 25;283(1):1-6 [PMID: 11312656]
  17. IDCases. 2022 Jan 21;27:e01412 [PMID: 35127447]
  18. Molecules. 2017 Oct 18;22(10): [PMID: 29057806]
  19. Methods Mol Biol. 2015;1263:243-50 [PMID: 25618350]
  20. JCI Insight. 2017 Mar 23;2(6):e88864 [PMID: 28352651]
  21. Front Microbiol. 2020 Feb 18;11:178 [PMID: 32132985]
  22. Fitoterapia. 2004 Sep;75(6):566-72 [PMID: 15351110]
  23. J Virol. 2014 Jul;88(13):7294-306 [PMID: 24741084]
  24. Molecules. 2014 Jul 31;19(8):11279-99 [PMID: 25090118]
  25. Nucleic Acids Res. 2021 Jan 8;49(D1):D1388-D1395 [PMID: 33151290]
  26. FEBS J. 2009 May;276(9):2599-614 [PMID: 19348625]
  27. Cell Prolif. 2015 Aug;48(4):398-404 [PMID: 26009974]
  28. Molecules. 2020 Apr 23;25(8): [PMID: 32340232]
  29. Chem Biodivers. 2021 Dec;18(12):e2100540 [PMID: 34599555]
  30. J Chem Inf Model. 2016 Dec 27;56(12):2281-2286 [PMID: 27808512]
  31. Phytomedicine. 2019 Oct;63:153002 [PMID: 31301539]
  32. Structure. 2003 Apr;11(4):423-33 [PMID: 12679020]
  33. PLoS Pathog. 2020 Mar 24;16(3):e1008429 [PMID: 32208449]
  34. Bioorg Med Chem. 2003 Oct 15;11(21):4599-613 [PMID: 14527557]
  35. Medchemcomm. 2018 Apr 23;9(5):757-758 [PMID: 30108965]
  36. Ther Clin Risk Manag. 2019 Feb 11;15:269-274 [PMID: 30804674]
  37. Antimicrob Agents Chemother. 2017 Dec 21;62(1): [PMID: 29084747]
  38. ChemMedChem. 2023 Jan 3;18(1):e202200425 [PMID: 36240514]
  39. Sci Transl Med. 2012 Feb 29;4(123):123ra24 [PMID: 22378924]
  40. Int Immunopharmacol. 2020 Jul;84:106578 [PMID: 32416454]
  41. Drug Discov Today Technol. 2004 Dec;1(4):337-41 [PMID: 24981612]
  42. N Engl J Med. 2018 Mar 22;378(12):1107-1120 [PMID: 29562156]
  43. Pharmacol Ther. 2020 Oct;214:107618 [PMID: 32592716]
  44. J Comput Chem. 2004 Oct;25(13):1605-12 [PMID: 15264254]
  45. Pharmacol Ther. 2020 May;209:107512 [PMID: 32097670]
  46. Curr Opin Pharmacol. 2021 Oct;60:158-167 [PMID: 34425392]
  47. Biomedicines. 2021 Nov 13;9(11): [PMID: 34829911]
  48. J Med Chem. 2002 Jun 6;45(12):2615-23 [PMID: 12036371]
  49. Blood Adv. 2019 Dec 23;3(24):4326-4335 [PMID: 31869416]
  50. Front Microbiol. 2014 Jun 18;5:300 [PMID: 24995005]
  51. J Mol Model. 2021 Jan 25;27(2):49 [PMID: 33495861]
  52. J Biol Chem. 2020 Jun 19;295(25):8596-8601 [PMID: 32381509]
  53. Drugs Today (Barc). 2021 Aug;57(8):483-490 [PMID: 34405205]
  54. Struct Chem. 2022;33(6):2221-2241 [PMID: 36118173]
  55. Antiviral Res. 2008 Apr;78(1):26-36 [PMID: 18258313]
  56. ChemMedChem. 2022 Apr 20;17(8):e202100695 [PMID: 35104396]
  57. Antiviral Res. 2016 Jan;125:51-7 [PMID: 26611396]
  58. Phytomedicine. 2016 Nov 15;23(12):1383-1391 [PMID: 27765358]
  59. Stem Cell Reports. 2022 Oct 11;17(10):2286-2302 [PMID: 36084636]
  60. Curr Protoc. 2021 Aug;1(8):e217 [PMID: 34370395]
  61. Toxins (Basel). 2019 Mar 25;11(3): [PMID: 30934618]
  62. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D233-7 [PMID: 15608185]
  63. Sci Rep. 2018 Mar 12;8(1):4329 [PMID: 29531263]
  64. Int J Mol Sci. 2022 Sep 09;23(18): [PMID: 36142360]
  65. Curr Top Med Chem. 2007;7(10):1006-14 [PMID: 17508934]
  66. Antiviral Res. 2008 Jul;79(1):6-11 [PMID: 18423902]
  67. J Nat Prod. 2004 Jan;67(1):94-7 [PMID: 14738396]
  68. Nat Protoc. 2010 Apr;5(4):725-38 [PMID: 20360767]
  69. J Comput Chem. 2004 Aug;25(11):1416-29 [PMID: 15185335]
  70. PLoS One. 2013 Oct 30;8(10):e78085 [PMID: 24205103]
  71. J Chem Theory Comput. 2021 Jul 13;17(7):4291-4300 [PMID: 34096718]
  72. J Med Chem. 2007 Aug 23;50(17):4087-95 [PMID: 17663539]
  73. Biomedicines. 2021 Nov 30;9(12): [PMID: 34944612]
  74. PLoS One. 2013 Jul 18;8(7):e68992 [PMID: 23874843]
  75. J Med Chem. 2012 Jul 26;55(14):6582-94 [PMID: 22716043]
  76. Antiviral Res. 2009 Aug;83(2):171-8 [PMID: 19416738]
  77. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  78. J Biol Chem. 2020 Oct 9;295(41):14084-14099 [PMID: 32788215]
  79. J Infect Public Health. 2016 May-Jun;9(3):220-6 [PMID: 27095300]
  80. Nat Methods. 2015 Jan;12(1):7-8 [PMID: 25549265]
  81. BMC Bioinformatics. 2008 Jan 23;9:40 [PMID: 18215316]
  82. Dakar Med. 2000;45(2):113-6 [PMID: 15779163]
  83. Nucleic Acids Res. 2003 Jul 1;31(13):3352-5 [PMID: 12824325]
  84. Eur J Immunol. 2021 Aug;51(8):2074-2085 [PMID: 33945643]
  85. Emerg Infect Dis. 2016 Feb;22(2):289-91 [PMID: 26811984]
  86. Antiviral Res. 2020 Dec;184:104954 [PMID: 33080251]
  87. J Clin Med. 2021 Jan 13;10(2): [PMID: 33451007]
  88. Eur J Med Chem. 2016 Oct 4;121:232-237 [PMID: 27240277]
  89. Cell Rep. 2021 Apr 13;35(2):108986 [PMID: 33852858]
  90. Nucleic Acids Res. 2021 Jan 8;49(D1):D437-D451 [PMID: 33211854]
  91. Am J Nurs. 2021 Apr 1;121(4):22 [PMID: 33755619]
  92. Nucleic Acids Res. 2014 Jan;42(Database issue):D1083-90 [PMID: 24214965]
  93. Antiviral Res. 2015 Feb;114:86-95 [PMID: 25499125]
  94. Biomed Pharmacother. 1997;51(4):176-80 [PMID: 9207986]
  95. PLoS Comput Biol. 2013;9(3):e1002959 [PMID: 23516348]
  96. Molecules. 2021 May 01;26(9): [PMID: 34062737]
  97. Heliyon. 2020 Oct 07;6(10):e04944 [PMID: 33083581]
  98. Vet World. 2021 Jul;14(7):1797-1803 [PMID: 34475700]
  99. Emerg Microbes Infect. 2014 Dec;3(12):e84 [PMID: 26038505]
  100. Bioorg Med Chem Lett. 2012 May 15;22(10):3473-9 [PMID: 22520261]
  101. Lancet Infect Dis. 2020 Jun;20(6):719-730 [PMID: 32199492]
  102. PLoS Negl Trop Dis. 2018 Nov 19;12(11):e0006934 [PMID: 30452439]
  103. Drugs. 2021 Apr;81(5):595-598 [PMID: 33751449]
  104. Sci Rep. 2017 Mar 03;7:42717 [PMID: 28256516]
  105. Drug Des Devel Ther. 2019 Jul 29;13:2565-2577 [PMID: 31534310]
  106. Vet Parasitol. 2009 May 26;162(1-2):116-9 [PMID: 19286322]
  107. J Chem Theory Comput. 2015 Jul 14;11(7):3499-509 [PMID: 26190950]
  108. Planta Med. 1994 Dec;60(6):516-20 [PMID: 7809203]
  109. Nat Rev Dis Primers. 2020 Feb 20;6(1):13 [PMID: 32080199]
  110. Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):3-26 [PMID: 11259830]
  111. Protein Sci. 2016 Sep;25(9):1648-58 [PMID: 27328459]
  112. J Comput Chem. 2009 Jul 30;30(10):1545-614 [PMID: 19444816]
  113. Viruses. 2014 Oct 17;6(10):3837-54 [PMID: 25330123]
  114. Mol Biol (Mosk). 2008 Jul-Aug;42(4):701-6 [PMID: 18856071]
  115. Semin Immunopathol. 2017 Jul;39(5):551-561 [PMID: 28555386]
  116. Methods Mol Biol. 2008;426:145-59 [PMID: 18542861]
  117. J Nat Prod. 2001 Oct;64(10):1261-5 [PMID: 11678647]
  118. J Virol. 2006 Jun;80(11):5135-44 [PMID: 16698994]
  119. Tohoku J Exp Med. 2009 Feb;217(2):93-9 [PMID: 19212101]
  120. Phytomedicine. 2014 Sep 25;21(11):1273-80 [PMID: 25172789]
  121. J Adv Res. 2021 Nov 26;36:201-210 [PMID: 35116174]
  122. Bioorg Med Chem Lett. 2010 Jul 15;20(14):4088-90 [PMID: 20558062]
  123. J Comput Chem. 2010 Jan 30;31(2):455-61 [PMID: 19499576]
  124. Int J Mol Sci. 2016 Apr 20;17(4): [PMID: 27104528]
  125. Antiviral Res. 2014 Nov;111:93-9 [PMID: 25251726]
  126. J Antibiot (Tokyo). 2020 Sep;73(9):593-602 [PMID: 32533071]
  127. Front Vet Sci. 2021 Dec 08;8:764909 [PMID: 34957281]
  128. N Engl J Med. 2017 Oct 12;377(15):1428-1437 [PMID: 26465681]
  129. J Med Chem. 2014 Mar 13;57(5):1753-69 [PMID: 23672640]
  130. Virus Res. 1995 Dec;39(2-3):129-50 [PMID: 8837880]
  131. Methods Enzymol. 2003;374:461-91 [PMID: 14696385]
  132. Nucleic Acids Res. 2019 Jan 8;47(D1):D930-D940 [PMID: 30398643]
  133. Med Microbiol Immunol. 2010 Nov;199(4):291-7 [PMID: 20386921]
  134. Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3157-62 [PMID: 20133606]
  135. Infect Dis Poverty. 2016 Feb 17;5:12 [PMID: 26888469]
  136. Clin Infect Dis. 2016 Jun 15;62(12):1552-1555 [PMID: 27045122]
  137. Malays J Med Sci. 2015 Nov;22(6):54-57 [PMID: 28223886]
  138. ACS Omega. 2019 Jan 31;4(1):2353-2361 [PMID: 30729228]
  139. Biomolecules. 2021 Mar 18;11(3): [PMID: 33803906]
  140. J Virol. 2002 May;76(10):4855-65 [PMID: 11967302]
  141. Sci Rep. 2016 Jan 29;6:20107 [PMID: 26822701]
  142. Molecules. 2022 Aug 26;27(17): [PMID: 36080262]
  143. Hepat Med. 2013 Mar 15;5:17-30 [PMID: 24696622]
  144. Cell. 2013 Aug 15;154(4):763-74 [PMID: 23953110]
  145. Curr Top Med Chem. 2014;14(16):1923-38 [PMID: 25262799]
  146. Lancet Infect Dis. 2004 Jul;4(7):426-36 [PMID: 15219553]
  147. Antiviral Res. 2020 Jun;178:104787 [PMID: 32251768]
  148. Nature. 2015 May 21;521(7552):362-5 [PMID: 25901685]
  149. Drugs. 2017 Oct;77(16):1797-1804 [PMID: 28929412]
  150. Nucleic Acids Res. 2012 Jan;40(Database issue):D1100-7 [PMID: 21948594]
  151. J Biomol Struct Dyn. 2022;40(19):9158-9176 [PMID: 33988074]
  152. EMBO J. 2000 Aug 15;19(16):4228-36 [PMID: 10944105]
  153. J Pharmacol Toxicol Methods. 2000 Jul-Aug;44(1):235-49 [PMID: 11274893]
  154. Protein Sci. 2004 Oct;13(10):2753-65 [PMID: 15388863]
  155. J Virol. 2003 Feb;77(3):1812-9 [PMID: 12525615]
  156. Emerg Infect Dis. 2017 Apr;23(4):714-715 [PMID: 28287374]
  157. Nucleic Acids Res. 2018 Jul 2;46(W1):W363-W367 [PMID: 29860391]
  158. BMC Res Notes. 2010 Aug 16;3:226 [PMID: 20712861]
  159. Methods Mol Biol. 2017;1607:627-641 [PMID: 28573592]
  160. Nucleic Acids Res. 2015 Jul 1;43(W1):W174-81 [PMID: 25883148]
  161. Elife. 2020 Mar 17;9: [PMID: 32180547]
  162. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W116-8 [PMID: 16844972]
  163. J Comput Chem. 2011 Aug;32(11):2359-68 [PMID: 21541964]
  164. Drug Discov Ther. 2017 Nov 22;11(5):246-252 [PMID: 29070744]
  165. J Cheminform. 2011 Oct 07;3:33 [PMID: 21982300]
  166. Lancet Infect Dis. 2015 Nov;15(11):1292-9 [PMID: 26271406]
  167. J Virol. 2021 May 24;95(12): [PMID: 33827940]
  168. Mar Drugs. 2021 Nov 25;19(12): [PMID: 34940660]
  169. Viruses. 2020 Dec 31;13(1): [PMID: 33396288]
  170. J Nat Prod. 2006 Apr;69(4):650-3 [PMID: 16643044]
  171. J Nat Prod. 2005 Feb;68(2):189-93 [PMID: 15730241]
  172. Antiviral Res. 2018 Mar;151:97-104 [PMID: 29289666]
  173. J Chem Inf Model. 2015 Feb 23;55(2):460-73 [PMID: 25558886]
  174. Planta Med. 1975 Oct;28(2):139-42 [PMID: 1197416]
  175. Sci Rep. 2020 Aug 31;10(1):14268 [PMID: 32868789]
  176. Mol Divers. 2022 Jun;26(3):1635-1644 [PMID: 34357513]
  177. Cell Rep. 2018 Jan 30;22(5):1159-1168 [PMID: 29386105]
  178. Lancet. 2003 Jun 14;361(9374):2045-6 [PMID: 12814717]
  179. J Chem Inf Model. 2014 Jul 28;54(7):1951-62 [PMID: 24850022]
  180. Drugs. 2021 Jan;81(1):175-178 [PMID: 33432551]
  181. PLoS One. 2017 Feb 10;12(2):e0171936 [PMID: 28187149]
  182. Fundam Clin Pharmacol. 2021 Apr;35(2):260-276 [PMID: 33427370]
  183. Lancet Infect Dis. 2020 Sep;20(9):e231-e237 [PMID: 32563280]
  184. Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4275-80 [PMID: 22371572]
  185. Biomed Res Int. 2021 Sep 9;2021:9066938 [PMID: 34540999]
  186. J Chem Inf Model. 2015 Nov 23;55(11):2324-37 [PMID: 26479676]
  187. Nucleic Acids Res. 2017 Jan 4;45(D1):D271-D281 [PMID: 27794042]
  188. Nucleic Acids Res. 2008 Jan;36(Database issue):D901-6 [PMID: 18048412]
  189. Biomol Ther (Seoul). 2015 Jul;23(4):345-9 [PMID: 26157551]
  190. J Med Chem. 2018 Apr 26;61(8):3582-3594 [PMID: 29624387]
  191. J Virol. 2003 Sep;77(18):9987-92 [PMID: 12941909]
  192. Comput Biol Med. 2022 Feb;141:105149 [PMID: 34953359]
  193. Virus Res. 2019 Nov;273:197741 [PMID: 31494148]
  194. Nucleic Acids Res. 2017 Jul 3;45(W1):W331-W336 [PMID: 28444340]
  195. Expert Opin Drug Metab Toxicol. 2019 May;15(5):353-366 [PMID: 30969139]
  196. Bioinformatics. 2000 Aug;16(8):747-8 [PMID: 11099264]
  197. Phytomedicine. 2018 Dec 1;51:94-103 [PMID: 30466633]
  198. J Transl Int Med. 2017 Mar 31;5(1):8-17 [PMID: 28680834]
  199. Neurotherapeutics. 2016 Jul;13(3):461-70 [PMID: 27412684]
  200. Antimicrob Agents Chemother. 2002 Apr;46(4):977-81 [PMID: 11897578]
  201. J Pathol. 2015 Jan;235(2):153-74 [PMID: 25297522]
  202. BMC Bioinformatics. 2016 Feb 18;17:90 [PMID: 26887654]
  203. Viruses. 2019 Jan 11;11(1): [PMID: 30641880]
  204. J Nat Prod. 2017 Jul 28;80(7):2067-2076 [PMID: 28641017]
  205. Antiviral Res. 2016 Feb;126:117-24 [PMID: 26752081]
  206. Phytomedicine. 2010 Sep;17(11):862-7 [PMID: 20696559]
  207. Br J Pharmacol. 2015 Sep;172(18):4481-4492 [PMID: 26102077]
  208. Eur J Pharmacol. 2009 Mar 15;606(1-3):246-54 [PMID: 19374837]
  209. Saudi J Biol Sci. 2020 Jan;27(1):117-123 [PMID: 31889825]
  210. Expert Rev Anti Infect Ther. 2016;14(1):81-94 [PMID: 26559705]
  211. PLoS One. 2015 Feb 06;10(2):e0117602 [PMID: 25658356]
  212. Sci Rep. 2017 Jun 20;7(1):3866 [PMID: 28634381]
  213. J Ginseng Res. 2016 Oct;40(4):309-314 [PMID: 27746682]
  214. J Med Chem. 2006 Oct 5;49(20):5912-31 [PMID: 17004707]
  215. J Pharmacol Pharmacother. 2011 Jan;2(1):52-3 [PMID: 21701651]
  216. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082 [PMID: 29126136]
  217. Nat Rev Drug Discov. 2007 Nov;6(11):881-90 [PMID: 17971784]
  218. Comput Biol Chem. 2022 Dec;101:107766 [PMID: 36088668]
  219. Sci Rep. 2019 Oct 21;9(1):15076 [PMID: 31636332]
  220. J Infect Dis. 2011 Nov;204 Suppl 3:S957-67 [PMID: 21987776]
  221. Antiviral Res. 2013 Apr;98(1):44-53 [PMID: 23422646]
  222. Therap Adv Gastroenterol. 2017 Jan;10(1):155-167 [PMID: 28286567]
  223. Pain. 2019 Jan;160(1):117-135 [PMID: 30169422]
  224. J Chem Theory Comput. 2019 Nov 12;15(11):6504-6512 [PMID: 31584802]
  225. J Pharm Anal. 2019 Dec;9(6):414-422 [PMID: 31890341]
  226. Nature. 2014 Apr 17;508(7496):402-5 [PMID: 24590073]
  227. Bioinformation. 2019 Oct 8;15(9):627-632 [PMID: 31787811]

MeSH Term

Animals
Hemorrhagic Fever, Ebola
Viral Proteins
Molecular Docking Simulation
Cheminformatics
Ebolavirus

Chemicals

Viral Proteins

Word Cloud

Created with Highcharts 10.0.0compoundsdrugsVP40potentialEbolaapprovedtotalmolecularvirusEVDproteinEBOVhighlyviralalsoinhibitorsareacurveobtainednatural-product-derivedChineseAfricanAfroDbNANPDBTCMrespectivelydockingactivityleadpredictedanti-EbolaADMETanti-EBOVmaydynamicssimulationsstillinfectiouscausesseverehemorrhagicfeversprimatesHoweverregulatorilydiseasevirulentlethalnaturehighlightsneeddeveloptherapeuticagentsViral40kDaabundantlyexpressedinfectioncoordinatesassemblybuddingreleaseparticleshostcellregulatestranscriptionRNAreplicationstudysoughtidentifysmallmoleculespotentiallyinhibittargetingN-terminaldomainusingsilicoapproachstatisticalqualityAutoDockVina'scapacitydiscriminatedecoysdeterminedreceiveroperatingcharacteristicAUC-ROC079129519sourceswell2738successfullyscreenedUsingthreshold-8kcal/mol71116330NorthernNaturalProductsDatabasetraditionalmedicinelibrariesbiologicalpredictionsuggestedantiviralpropertiesadditionrandom-forest-support-vector-machine-basedalgorithmsICvaluesmicromolarrangeless25μM42identifieddesirableprofilescomprising12392-hydroxyseneganolideZINC000034518176ZINC00009548594223includingdoramectinglecaprevirvelpatasvirledipasviravermectinB1nafarelinacetatedanoprevireltrombopaglanatosideCglycyrrhizinamongotherscanexploredrepurposedtreatmentMolecularcoupledmechanicsPoisson-Boltzmannsurfacecalculationscorroboratedstabilitygoodbindingaffinitiescomplexes-4697-1189kJ/moldevelopedexperimentaltestingCheminformatics-BasedStudyIdentifiesPotentialInhibitorsMM/PBSAnaturalproducts

Similar Articles

Cited By