Comparative Analysis of the Alkaline Proteolytic Enzymes of Clade Species and Their Putative Applications.

Dominika Ciurko, Cécile Neuvéglise, Maciej Szwechłowicz, Zbigniew Lazar, Tomasz Janek
Author Information
  1. Dominika Ciurko: Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland. ORCID
  2. Cécile Neuvéglise: SPO, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France. ORCID
  3. Maciej Szwechłowicz: Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland.
  4. Zbigniew Lazar: Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland. ORCID
  5. Tomasz Janek: Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland. ORCID

Abstract

Proteolytic enzymes are commercially valuable and have multiple applications in various industrial sectors. The most studied proteolytic enzymes produced by , extracellular alkaline protease (Aep) and extracellular acid protease (Axp), were shown to be good candidates for different biotechnological applications. In this study, we performed a comprehensive analysis of the alkaline proteolytic enzymes of clade species, including phylogenetic studies, synteny analysis, and protease production and application. Using a combination of comparative genomics approaches based on sequence similarity, synteny conservation, and phylogeny, we reconstructed the evolutionary scenario of the gene for species of the clade. Furthermore, except for the proteolytic activity of the analyzed clade strains, the brewers' spent grain (BSG) was used as a substrate to obtain protein hydrolysates with antioxidant activity. For each culture, the degree of hydrolysis was calculated. The most efficient protein hydrolysis was observed in the cultures of , , and In contrast, the best results obtained using the 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) method were observed for the culture medium after the growth of , , and on BSG.

Keywords

References

  1. Yeast. 1994 Jan;10(1):67-79 [PMID: 8203153]
  2. Mol Syst Biol. 2011 Oct 11;7:539 [PMID: 21988835]
  3. Microb Cell Fact. 2011 May 20;10:38 [PMID: 21595994]
  4. Biotechnol Adv. 2015 Dec;33(8):1522-46 [PMID: 26248319]
  5. J Gen Physiol. 1938 Sep 20;22(1):79-89 [PMID: 19873094]
  6. PLoS One. 2013 May 07;8(5):e63356 [PMID: 23667605]
  7. Sci Rep. 2019 Sep 16;9(1):13365 [PMID: 31527614]
  8. J Fungi (Basel). 2021 Jul 10;7(7): [PMID: 34356927]
  9. Antonie Van Leeuwenhoek. 2005 Aug;88(2):121-30 [PMID: 16096688]
  10. Antonie Van Leeuwenhoek. 2004 Aug;86(2):105-10 [PMID: 15280644]
  11. Food Microbiol. 2016 Feb;53(Pt B):172-81 [PMID: 26678145]
  12. Food Microbiol. 2006 Oct;23(7):641-8 [PMID: 16943063]
  13. Microb Cell Fact. 2021 Oct 9;20(1):195 [PMID: 34627248]
  14. RSC Adv. 2021 Jan 25;11(8):4688-4700 [PMID: 35424402]
  15. J Appl Microbiol. 2003;95(2):267-72 [PMID: 12859757]
  16. Trends Biotechnol. 2023 Feb;41(2):242-254 [PMID: 35940976]
  17. Mol Biol Evol. 2000 Apr;17(4):540-52 [PMID: 10742046]
  18. Molecules. 2021 Dec 22;27(1): [PMID: 35011274]
  19. Bioinformatics. 2012 Feb 15;28(4):464-9 [PMID: 22199388]
  20. Front Microbiol. 2020 Jul 31;11:1831 [PMID: 32849431]
  21. Microbiology (Reading). 1996 Oct;142 ( Pt 10):2913-21 [PMID: 8885407]
  22. PLoS One. 2015 Nov 18;10(11):e0143096 [PMID: 26580812]
  23. Food Chem. 2014;152:1-10 [PMID: 24444899]
  24. Appl Microbiol Biotechnol. 2017 Apr;101(8):3319-3334 [PMID: 28012044]
  25. Crit Rev Biotechnol. 1993;13(1):1-55 [PMID: 8477452]
  26. J Biol Chem. 1989 Apr 15;264(11):6037-43 [PMID: 2649495]
  27. Med Mycol J. 2011;52(2):107-15 [PMID: 21788722]
  28. Biochim Biophys Acta. 1977 Apr 27;497(2):525-38 [PMID: 870075]
  29. Int J Food Microbiol. 2016 Nov 21;237:17-27 [PMID: 27541978]
  30. Int J Food Microbiol. 2001 Sep 19;69(1-2):69-77 [PMID: 11589562]
  31. J Bacteriol. 1983 Apr;154(1):23-31 [PMID: 6339473]
  32. FEMS Microbiol Lett. 2007 Mar;268(2):178-86 [PMID: 17227470]
  33. J Cosmet Dermatol. 2009 Mar;8(1):8-13 [PMID: 19250159]
  34. Nat Biotechnol. 2019 Apr;37(4):420-423 [PMID: 30778233]
  35. Nucleic Acids Res. 2022 Jul 5;50(W1):W228-W234 [PMID: 35489069]
  36. Antonie Van Leeuwenhoek. 1980;46(6):517-21 [PMID: 7195185]
  37. Int J Mol Sci. 2022 Sep 16;23(18): [PMID: 36142732]
  38. Microbiology (Reading). 1997 Sep;143 ( Pt 9):3045-3054 [PMID: 9308186]
  39. Nutrition. 2010 Apr;26(4):449-58 [PMID: 19632091]
  40. Syst Biol. 2010 May;59(3):307-21 [PMID: 20525638]
  41. Crit Rev Microbiol. 2014 Aug;40(3):187-206 [PMID: 23488872]
  42. Mol Biol Evol. 2010 Feb;27(2):221-4 [PMID: 19854763]
  43. Food Chem. 2017 Aug 1;228:602-609 [PMID: 28317769]

MeSH Term

Peptide Hydrolases
Yarrowia
Phylogeny
Hydrolysis
Synteny

Chemicals

Peptide Hydrolases

Word Cloud

Created with Highcharts 10.0.0proteasecladeenzymesproteolyticProteolyticapplicationsextracellularalkalineacidanalysisspeciessyntenyactivityspentgrainBSGproteinculturehydrolysisobservedcommerciallyvaluablemultiplevariousindustrialsectorsstudiedproducedAepAxpshowngoodcandidatesdifferentbiotechnologicalstudyperformedcomprehensiveincludingphylogeneticstudiesproductionapplicationUsingcombinationcomparativegenomicsapproachesbasedsequencesimilarityconservationphylogenyreconstructedevolutionaryscenariogeneFurthermoreexceptanalyzedstrainsbrewers'usedsubstrateobtainhydrolysatesantioxidantdegreecalculatedefficientculturescontrastbestresultsobtainedusing22-azinobis3-ethyl-benzothiazoline-6-sulfonicABTSmethodmediumgrowthComparativeAnalysisAlkalineEnzymesCladeSpeciesPutativeApplicationsYarrowiabrewers’phylogeneticsyeast

Similar Articles

Cited By (3)