Context-Aware Lossless and Lossy Compression of Radio Frequency Signals.

Aniol Martí, Jordi Portell, Jaume Riba, Orestes Mas
Author Information
  1. Aniol Martí: Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, 08034 Barcelona, Spain. ORCID
  2. Jordi Portell: Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, 08028 Barcelona, Spain. ORCID
  3. Jaume Riba: Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, 08034 Barcelona, Spain. ORCID
  4. Orestes Mas: Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, 08034 Barcelona, Spain. ORCID

Abstract

We propose an algorithm based on linear prediction that can perform both the lossless and near-lossless compression of RF signals. The proposed algorithm is coupled with two signal detection methods to determine the presence of relevant signals and apply varying levels of loss as needed. The first method uses spectrum sensing techniques, while the second one takes advantage of the error computed in each iteration of the Levinson-Durbin algorithm. These algorithms have been integrated as a new pre-processing stage into FAPEC, a data compressor first designed for space missions. We test the lossless algorithm using two different datasets. The first one was obtained from OPS-SAT, an ESA CubeSat, while the second one was obtained using a SDRplay RSPdx in Barcelona, Spain. The results show that our approach achieves compression ratios that are 23% better than (on average) and very similar to those of FLAC, but at higher speeds. We also assess the performance of our signal detectors using the second dataset. We show that high ratios can be achieved thanks to the lossy compression of the segments without any relevant signal.

Keywords

References

  1. Sensors (Basel). 2023 Mar 28;23(7): [PMID: 37050612]

Grants

  1. 4000137290/European Space Agency
  2. PID2019-105717RB-C22/Spanish Ministry of Science and Innovation
  3. PID2021-122842OB-C21/Spanish Ministry of Science and Innovation
  4. CEX2019-000918-M/Institute of Cosmos Sciences University of Barcelona

Word Cloud

Created with Highcharts 10.0.0compressionalgorithmsignalfirstsecondoneusingcanlosslesssignalstworelevantspectrumsensingdataobtainedshowratiosradioproposebasedlinearpredictionperformnear-losslessRFproposedcoupleddetectionmethodsdeterminepresenceapplyvaryinglevelslossneededmethodusestechniquestakesadvantageerrorcomputediterationLevinson-Durbinalgorithmsintegratednewpre-processingstageFAPECcompressordesignedspacemissionstestdifferentdatasetsOPS-SATESACubeSatSDRplayRSPdxBarcelonaSpainresultsapproachachieves23%betteraveragesimilarFLAChigherspeedsalsoassessperformancedetectorsdatasethighachievedthankslossysegmentswithoutContext-AwareLosslessLossyCompressionRadioFrequencySignalsfrequencysoftware-definedSDRspectralestimation

Similar Articles

Cited By