Use of Thermoluminescence Dosimetry for QA in High-Dose-Rate Skin Surface Brachytherapy with Custom-Flap Applicator.

Francesco Manna, Mariagabriella Pugliese, Francesca Buonanno, Federica Gherardi, Eva Iannacone, Giuseppe La Verde, Paolo Muto, Cecilia Arrichiello
Author Information
  1. Francesco Manna: Department of Physics "E. Pancini", Federico II University, 80126 Naples, Italy.
  2. Mariagabriella Pugliese: Department of Physics "E. Pancini", Federico II University, 80126 Naples, Italy. ORCID
  3. Francesca Buonanno: Radiotherapy Unit, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, 80131 Naples, Italy. ORCID
  4. Federica Gherardi: Radiotherapy Unit, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, 80131 Naples, Italy.
  5. Eva Iannacone: Radiotherapy Unit, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, 80131 Naples, Italy. ORCID
  6. Giuseppe La Verde: Department of Physics "E. Pancini", Federico II University, 80126 Naples, Italy. ORCID
  7. Paolo Muto: Radiotherapy Unit, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, 80131 Naples, Italy.
  8. Cecilia Arrichiello: Radiotherapy Unit, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, 80131 Naples, Italy.

Abstract

Surface brachytherapy (BT) lacks standard quality assurance (QA) protocols. Commercially available treatment planning systems (TPSs) are based on a dose calculation formalism that assumes the patient is made of water, resulting in potential deviations between planned and delivered doses. Here, a method for treatment plan verification for skin surface BT is reported. Chips of thermoluminescent dosimeters (TLDs) were used for dose point measurements. High-dose-rate treatments were simulated and delivered through a custom-flap applicator provided with four fixed catheters to guide the Iridium-192 (Ir-192) source by way of a remote afterloading system. A flat water-equivalent phantom was used to simulate patient skin. Elekta TPS Oncentra Brachy was used for planning. TLDs were calibrated to Ir-192 through an indirect method of linear interpolation between calibration factors (CFs) measured for 250 kV X-rays, Cesium-137, and Cobalt-60. Subsequently, plans were designed and delivered to test the reproducibility of the irradiation set-up and to make comparisons between planned and delivered dose. The obtained CF for Ir-192 was (4.96 ± 0.25) μC/Gy. Deviations between measured and TPS calculated doses for multi-catheter treatment configuration ranged from -8.4% to 13.3% with an average of 0.6%. TLDs could be included in clinical practice for QA in skin BT with a customized flap applicator.

Keywords

References

  1. Br J Radiol. 2014 Sep;87(1041):20140146 [PMID: 24734939]
  2. Med Phys. 2011 Feb;38(2):782-801 [PMID: 21452716]
  3. Med Phys. 2014 Feb;41(2):021703 [PMID: 24506594]
  4. Med Phys. 2010 Oct;37(10):5509-17 [PMID: 21089786]
  5. Health Phys. 1985 Nov;49(5):873-81 [PMID: 4066347]
  6. Med Phys. 2015 Aug;42(8):4954-64 [PMID: 26233221]
  7. Phys Med Biol. 1998 Nov;43(11):3235-59 [PMID: 9832014]
  8. Med Phys. 2006 Jan;33(1):16-20 [PMID: 16485404]
  9. Radiother Oncol. 2008 Nov;89(2):156-63 [PMID: 18692265]
  10. Med Phys. 2014 Apr;41(4):042101 [PMID: 24694149]
  11. Phys Med Biol. 1981 Sep;26(5):765-824 [PMID: 7027280]
  12. Med Phys. 2010 Jun;37(6):2693-702 [PMID: 20632580]
  13. PLoS One. 2015 Oct 01;10(10):e0139287 [PMID: 26427065]
  14. Med Phys. 2012 Oct;39(10):6208-36 [PMID: 23039658]
  15. Brachytherapy. 2015 Nov-Dec;14(6):840-58 [PMID: 26319367]
  16. Med Phys. 2000 May;27(5):1025-9 [PMID: 10841406]
  17. ISRN Oncol. 2014 Jan 23;2014:125020 [PMID: 24587919]
  18. J Contemp Brachytherapy. 2016 Oct;8(5):441-447 [PMID: 27895687]
  19. J Contemp Brachytherapy. 2017 Dec;9(6):581-589 [PMID: 29441104]
  20. Br J Radiol. 2014 Sep;87(1041):20140206 [PMID: 25007037]
  21. Radiat Prot Dosimetry. 2002;100(1-4):119-22 [PMID: 12382842]
  22. J Appl Clin Med Phys. 2013 Jan 07;14(1):4037 [PMID: 23318392]
  23. Med Phys. 1997 Oct;24(10):1557-98 [PMID: 9350711]
  24. Int J Radiat Oncol Biol Phys. 2005 Jun 1;62(2):579-84 [PMID: 15890603]
  25. Strahlenther Onkol. 2022 Feb;198(2):93-109 [PMID: 34724086]
  26. Radiat Meas. 2017 Nov;106:412-415 [PMID: 29230093]
  27. Med Phys. 2004 Mar;31(3):633-74 [PMID: 15070264]
  28. Med Phys. 2013 Jul;40(7):070902 [PMID: 23822403]
  29. Phys Med Biol. 1996 Jun;41(6):995-1006 [PMID: 8794480]
  30. Med Phys. 2006 Dec;33(12):4578-82 [PMID: 17278809]
  31. Med Phys. 2001 Jun;28(6):868-93 [PMID: 11439485]
  32. Brachytherapy. 2017 Mar - Apr;16(2):409-414 [PMID: 27965116]
  33. Med Phys. 2017 Sep;44(9):e297-e338 [PMID: 28644913]
  34. Radiother Oncol. 2018 Mar;126(3):377-385 [PMID: 29455924]
  35. Med Phys. 2011 Oct;38(10):5539-50 [PMID: 21992372]
  36. Med Phys. 2008 May;35(5):1859-69 [PMID: 18561661]
  37. Brachytherapy. 2012 Nov-Dec;11(6):528-35 [PMID: 22226080]
  38. Radiat Prot Dosimetry. 2003;106(1):33-43 [PMID: 14653324]
  39. Phys Med Biol. 1995 Dec;40(12):2015-36 [PMID: 8719942]
  40. CA Cancer J Clin. 2019 Sep;69(5):386-401 [PMID: 31361333]
  41. Med Phys. 2014 Feb;41(2):022104 [PMID: 24506636]
  42. Med Phys. 2014 Feb;41(2):022103 [PMID: 24506635]
  43. Dose Response. 2020 Feb 13;18(1):1559325819894081 [PMID: 32110167]
  44. Appl Radiat Isot. 2010 Apr-May;68(4-5):760-2 [PMID: 19819151]
  45. Med Phys. 2020 Oct;47(10):e951-e987 [PMID: 32862452]
  46. Radiother Oncol. 2007 Apr;83(1):86-93 [PMID: 17368842]
  47. J Contemp Brachytherapy. 2019 Aug;11(4):337-342 [PMID: 31523234]
  48. Med Phys. 1992 Nov-Dec;19(6):1427-33 [PMID: 1461205]
  49. Int J Radiat Oncol Biol Phys. 1992;23(3):661-9 [PMID: 1612968]
  50. Med Dosim. 2013 Summer;38(2):160-4 [PMID: 23246195]
  51. Med Phys. 1994 Apr;21(4):581-618 [PMID: 8058027]
  52. Front Oncol. 2021 Mar 09;11:647222 [PMID: 33768006]
  53. Med Phys. 1995 Feb;22(2):209-34 [PMID: 7565352]
  54. Int J Radiat Oncol Biol Phys. 2000 Apr 1;47(1):95-102 [PMID: 10758310]

MeSH Term

Humans
Brachytherapy
Reproducibility of Results
Iridium Radioisotopes
Radiotherapy Dosage
Thermoluminescent Dosimetry
Water
Radiometry

Chemicals

Iridium-192
Iridium Radioisotopes
Water

Word Cloud

Created with Highcharts 10.0.0deliveredBTQAtreatmentdoseskinTLDsusedapplicatorIr-192SurfacebrachytherapyqualityassuranceplanningpatientplanneddosesmethodsurfacethermoluminescentTPSmeasured0dosimetrylacksstandardprotocolsCommerciallyavailablesystemsTPSsbasedcalculationformalismassumesmadewaterresultingpotentialdeviationsplanverificationreportedChipsdosimeterspointmeasurementsHigh-dose-ratetreatmentssimulatedcustom-flapprovidedfourfixedcathetersguideIridium-192sourcewayremoteafterloadingsystemflatwater-equivalentphantomsimulateElektaOncentraBrachycalibratedindirectlinearinterpolationcalibrationfactorsCFs250kVX-raysCesium-137Cobalt-60Subsequentlyplansdesignedtestreproducibilityirradiationset-upmakecomparisonsobtainedCF496±25μC/GyDeviationscalculatedmulti-catheterconfigurationranged-84%133%average6%includedclinicalpracticecustomizedflapUseThermoluminescenceDosimetryHigh-Dose-RateSkinBrachytherapyCustom-FlapApplicatorcustomvivoradiationdosimeter

Similar Articles

Cited By