Hip Osteoarthritis: Bench to Bedside Perspective.

Young-Jo Kim
Author Information
  1. Young-Jo Kim: Harvard Medical School, Boston, MA, USA. Young-jo.kim@childrens.harvard.edu.

Abstract

Osteoarthritis is a major source of pain, disability, and economic cost worldwide. For nearly a century, there has been a debate about the causes of hip osteoarthritis and the role that structural abnormalities may play as a causative factor. Recent advances in open and minimally invasive techniques such as the periacetabular osteotomy, surgical hip dislocation and arthroscopic approaches have allowed us safe access into the joint to not only improve the abnormal bony structure and repair damaged tissue but also to gain clinical insights into the cause of joint damage. At present, structural abnormalities such as acetabular dysplasia and CAM deformities of the proximal femur are thought to be a major factor causing premature hip OA. Over the past 30 years, our understanding of the function and biology of articular cartilage has evolved from a relatively acellular lubricating cushion to a metabolically active tissue that can modulate its tissue composition in response to mechanical loading. Using advanced biochemical MR imaging technique called delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC), it has been shown that alteration in the mechanical environment of the hip with a pelvic osteotomy in acetabular dysplasia can alter the articular cartilage composition. This further demonstrates the importance of mechanics in development of joint damage and the potential for surgical correction to prevent or slow down the progression of OA.

Keywords

References

  1. Glyn-Jones S, Palmer AJR, Agricola R et al (2015) Osteoarthritis. Lancet 386(9991):376–387. https://doi.org/10.1016/S0140-6736(14)60802-3 [DOI: 10.1016/S0140-6736(14)60802-3]
  2. Kurz B, Lemke AK, Fay J, Pufe T, Grodzinsky AJ, Schünke M (2005) Pathomechanisms of cartilage destruction by mechanical injury. Ann Anat Anat Anz Off Organ Anat Ges 187(5-6):473–485. https://doi.org/10.1016/j.aanat.2005.07.003 [DOI: 10.1016/j.aanat.2005.07.003]
  3. Ganz R, Klaue K, Vinh TS, Mast JW (1988) A new periacetabular osteotomy for the treatment of hip dysplasias. Technique and preliminary results. Clin Orthop 232:26–36 [DOI: 10.1097/00003086-198807000-00006]
  4. Leunig M, Ganz R (2014) The evolution and concepts of joint-preserving surgery of the hip. Bone Jt J 96-B(1):5–18. https://doi.org/10.1302/0301-620X.96B1.32823 [DOI: 10.1302/0301-620X.96B1.32823]
  5. Wiberg G (1939) Studies on Dysplasic Acetabula and Congenital Subluxation of the Hip Joint. Acata Chirgrgica Scand 83:5–131
  6. Murray RO (1965) The aetiology of primary osteoarthritis of the hip. Br J Radiol 38(455):810–824. https://doi.org/10.1259/0007-1285-38-455-810 [DOI: 10.1259/0007-1285-38-455-810]
  7. Solomon L (1975) Proceedings: osteoarthritis of the hip: pathological changes and their implications for treatment. J Bone Joint Surg (Br) 57(2):258 [PMID: 1141345]
  8. Resnick D (1975) Patterns of migration of the femoral head in osteoarthritis of the hip. Roentgenographic-pathologic correlation and comparison with rheumatoid arthritis. Am J Roentgenol Radium Ther Nucl Med 124(1):62–74. https://doi.org/10.2214/ajr.124.1.62 [DOI: 10.2214/ajr.124.1.62]
  9. Resnick D (1976) The “tilt deformity” of the femoral head in osteoarthritis of the hip: a poor indicator of previous epiphysiolysis. Clin Radiol 27(3):355–363. https://doi.org/10.1016/s0009-9260(76)80089-x [DOI: 10.1016/s0009-9260(76)80089-x]
  10. Murphy SB, Ganz R, Müller ME (1995) The prognosis in untreated dysplasia of the hip. A study of radiographic factors that predict the outcome. J Bone Joint Surg Am 77(7):985–989. https://doi.org/10.2106/00004623-199507000-00002 [DOI: 10.2106/00004623-199507000-00002]
  11. Harris WH (1986) Etiology of osteoarthritis of the hip. Clin Orthop 213:20–33 [DOI: 10.1097/00003086-198612000-00004]
  12. Lavigne M, Parvizi J, Beck M, Siebenrock KA, Ganz R, Leunig M (2004) Anterior femoroacetabular impingement: part I. Techniques of joint preserving surgery. Clin Orthop (418):61–66
  13. Bixby SD, Kienle KP, Nasreddine A, Zurakowski D, Kim YJ, Yen YM (2013) Reference values for Proximal Femoral anatomy in adolescents based on sex, physis, and imaging plane. Am J Sports Med 41(9):2074–2082. https://doi.org/10.1177/0363546513495346 [DOI: 10.1177/0363546513495346]
  14. Kienle KP, Keck J, Werlen S, Kim YJ, Siebenrock KA, Mamisch TC (2012) Femoral morphology and epiphyseal growth plate changes of the hip during maturation: MR assessments in a 1-year follow-up on a cross-sectional asymptomatic cohort in the age range of 9–17 years. Skelet Radiol 41(11):1381–1390. https://doi.org/10.1007/s00256-012-1358-9 [DOI: 10.1007/s00256-012-1358-9]
  15. Siebenrock KA, Wahab KHA, Werlen S, Kalhor M, Leunig M, Ganz R (2004) Abnormal extension of the femoral head epiphysis as a cause of cam impingement. Clin Orthop 418:54–60. https://doi.org/10.1097/00003086-200401000-00010 [DOI: 10.1097/00003086-200401000-00010]
  16. Burstein D, Velyvis J, Scott KT et al (2001) Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 6:36–41 [DOI: 10.1002/1522-2594(200101)45]
  17. Kim YJ, Jaramillo D, Millis MB, Gray ML, Burstein D (2003) Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Jt Surg Am Vol 85(10):1987–1992. https://doi.org/10.2106/00004623-200310000-00019 [DOI: 10.2106/00004623-200310000-00019]
  18. Casartelli NC, Maffiuletti NA, Valenzuela PL et al (2021) Is hip morphology a risk factor for developing hip osteoarthritis? A systematic review with meta-analysis. Osteoarthr Cartil 29(9):1252–1264. https://doi.org/10.1016/j.joca.2021.06.007 [DOI: 10.1016/j.joca.2021.06.007]
  19. Mankin HJ, Lippiello L (1970) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. J Bone Joint Surg Am 52(3):424–434 [DOI: 10.2106/00004623-197052030-00002]
  20. Maroudas A (1975) Glycosaminoglycan turn-over in articular cartilage. Philos Trans R Soc Lond Ser B Biol Sci 271(912):293–313. https://doi.org/10.1098/rstb.1975.0054 [DOI: 10.1098/rstb.1975.0054]
  21. Sah RLY, Kim YJ, Doong JYH, Grodzinsky AJ, Plass AHK, Sandy JD (1989) Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res 7(5):619–636. https://doi.org/10.1002/jor.1100070502 [DOI: 10.1002/jor.1100070502]
  22. Kim YJ, Sah RL, Grodzinsky AJ, Plaas AH, Sandy JD (1994) Mechanical regulation of cartilage biosynthetic behavior: physical stimuli. Arch Biochem Biophys 311(1):1–12. https://doi.org/10.1006/abbi.1994.1201 [DOI: 10.1006/abbi.1994.1201]
  23. Michaeli DA, Murphy SB, Hipp JA (1997) Comparison of predicted and measured contact pressures in normal and dysplastic hips. Med Eng Phys 19(2):180–186. https://doi.org/10.1016/s1350-4533(96)00051-3 [DOI: 10.1016/s1350-4533(96)00051-3]
  24. Tiderius CJ, Jessel R, Kim YJ, Burstein D (2007) Hip dGEMRIC in asymptomatic volunteers and patients with early osteoarthritis: the influence of timing after contrast injection. Magn Reson Med 57(4):803–805. https://doi.org/10.1002/mrm.21190 [DOI: 10.1002/mrm.21190]
  25. Mamisch TC, Dudda M, Hughes T, Burstein D, Kim YJ (2008) Comparison of delayed gadolinium enhanced MRI of cartilage (dGEMRIC) using inversion recovery and fast T1 mapping sequences. Magn Reson Med 60(4):768–773. https://doi.org/10.1002/mrm.21726 [DOI: 10.1002/mrm.21726]
  26. Hingsammer AM, Kalish LA, Stelzeneder D et al (2015) Does Periacetabular Osteotomy for Hip Dysplasia modulate cartilage biochemistry? J Bone Jt Surg Am Vol 97(7):544–550. https://doi.org/10.2106/JBJS.M.01233 [DOI: 10.2106/JBJS.M.01233]
  27. Zhao X, Chosa E, Totoribe K, Deng G (2010) Effect of periacetabular osteotomy for acetabular dysplasia clarified by three-dimensional finite element analysis. J Orthop Sci Off J Jpn Orthop Assoc 15(5):632–640. https://doi.org/10.1007/s00776-010-1511-z [DOI: 10.1007/s00776-010-1511-z]
  28. Bittersohl B, Hosalkar HS, Werlen S, Trattnig S, Siebenrock KA, Mamisch TC (2011) dGEMRIC and subsequent T1 mapping of the hip at 1.5 Tesla: normative data on zonal and radial distribution in asymptomatic volunteers. J Magn Reson Imaging JMRI 34(1):101–106. https://doi.org/10.1002/jmri.22528 [DOI: 10.1002/jmri.22528]

MeSH Term

Humans
Osteoarthritis, Hip
Osteotomy
Magnetic Resonance Imaging
Stress, Mechanical
Cartilage, Articular
Hip Joint

Word Cloud

Created with Highcharts 10.0.0hipjointtissuedamageOsteoarthritismajorstructuralabnormalitiesfactorosteotomysurgicalacetabulardysplasiaOAarticularcartilagecancompositionmechanicalHipsourcepaindisabilityeconomiccostworldwidenearlycenturydebatecausesosteoarthritisrolemayplaycausativeRecentadvancesopenminimallyinvasivetechniquesperiacetabulardislocationarthroscopicapproachesallowedussafeaccessimproveabnormalbonystructurerepairdamagedalsogainclinicalinsightscausepresentCAMdeformitiesproximalfemurthoughtcausingpremature hippast30 yearsunderstandingfunctionbiologyevolvedrelativelyacellularlubricatingcushionmetabolicallyactivemodulateresponseloadingUsingadvancedbiochemicalMRimagingtechniquecalleddelayedGadoliniumEnhancedMRICartilagedGEMRICshownalterationenvironmentpelvicalterdemonstratesimportancemechanicsdevelopmentpotentialcorrectionpreventslowprogressionOsteoarthritis:BenchBedsidePerspectiveImpingementJoint

Similar Articles

Cited By