Non-histone binding functions of PHD fingers.

Nitika Gaurav, Tatiana G Kutateladze
Author Information
  1. Nitika Gaurav: Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
  2. Tatiana G Kutateladze: Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA. Electronic address: tatiana.kutateladze@cuanschutz.edu.

Abstract

Plant homeodomain (PHD) fingers comprise a large and well-established family of epigenetic readers that recognize histone H3. A typical PHD finger binds to the unmodified or methylated amino-terminal tail of H3. This interaction is highly specific and can be regulated by post-translational modifications (PTMs) in H3 and other domains present in the protein. However, a set of PHD fingers has recently been shown to bind non-histone proteins, H3 mimetics, and DNA. In this review, we highlight the molecular mechanisms by which PHD fingers interact with ligands other than the amino terminus of H3 and discuss similarities and differences in engagement with histone and non-histone binding partners.

Keywords

References

  1. Structure. 2015 Jan 6;23(1):80-92 [PMID: 25533489]
  2. J Mol Biol. 2010 Jul 9;400(2):145-54 [PMID: 20460131]
  3. FEBS J. 2023 Apr;290(7):1782-1797 [PMID: 36271682]
  4. J Biol Chem. 2023 Feb;299(2):102862 [PMID: 36596360]
  5. Nat Commun. 2021 Jul 5;12(1):4130 [PMID: 34226546]
  6. Nat Struct Mol Biol. 2008 Jun;15(6):626-33 [PMID: 18488044]
  7. Mol Cell. 2002 May;9(5):945-56 [PMID: 12049732]
  8. Chem Sci. 2022 May 12;13(22):6599-6609 [PMID: 35756531]
  9. Elife. 2018 Apr 12;7: [PMID: 29648537]
  10. J Biol Chem. 2012 Dec 21;287(52):43410-6 [PMID: 23129768]
  11. Nature. 2006 Jul 6;442(7098):86-90 [PMID: 16728976]
  12. Nucleic Acids Res. 2022 Nov 28;50(21):12527-12542 [PMID: 36420895]
  13. Nat Commun. 2017 Oct 11;8(1):862 [PMID: 29021563]
  14. Nat Commun. 2017 Nov 14;8(1):1489 [PMID: 29138400]
  15. Mol Cell. 2007 Jan 12;25(1):15-30 [PMID: 17218268]
  16. Curr Opin Struct Biol. 2021 Dec;71:1-6 [PMID: 33993059]
  17. Mol Cell. 2007 Aug 17;27(4):596-608 [PMID: 17707231]
  18. Mol Cell. 2008 May 23;30(4):507-18 [PMID: 18498752]
  19. ACS Chem Biol. 2018 Apr 20;13(4):915-921 [PMID: 29529862]
  20. J Biol Chem. 2023 Apr;299(4):104601 [PMID: 36907441]
  21. Nat Commun. 2011 Nov 15;2:533 [PMID: 22086334]
  22. Nature. 2012 Mar 14;483(7390):428-33 [PMID: 22419161]
  23. Biochem J. 2014 May 1;459(3):505-12 [PMID: 24576085]
  24. Trends Biochem Sci. 2011 Jul;36(7):364-72 [PMID: 21514168]
  25. Nature. 2007 Aug 9;448(7154):714-7 [PMID: 17687327]
  26. Nat Chem Biol. 2016 Aug 18;12(9):662-8 [PMID: 27538025]
  27. Plant Cell. 2020 Jul;32(7):2178-2195 [PMID: 32358072]
  28. Nucleic Acids Res. 2016 Jan 8;44(1):472-84 [PMID: 26626149]
  29. Mol Cell Biol. 2001 May;21(10):3589-97 [PMID: 11313484]
  30. J Biol Chem. 2010 Mar 26;285(13):9322-9326 [PMID: 20129925]
  31. Nature. 2006 Jul 6;442(7098):96-9 [PMID: 16728974]
  32. Cell Rep. 2017 Oct 10;21(2):455-466 [PMID: 29020631]
  33. Nat Commun. 2019 Oct 17;10(1):4724 [PMID: 31624313]
  34. Structure. 2019 Jun 4;27(6):1029-1033.e3 [PMID: 31006586]
  35. Nucleic Acids Res. 2016 Apr 20;44(7):3448-63 [PMID: 26896805]
  36. Biochem J. 2021 May 28;478(10):1943-1958 [PMID: 33969871]
  37. Biochemistry. 2010 Aug 10;49(31):6576-86 [PMID: 20677832]
  38. Nature. 2006 Jul 6;442(7098):100-3 [PMID: 16728977]
  39. Cell. 2010 Jun 25;141(7):1183-94 [PMID: 20541251]
  40. Mol Interv. 2009 Dec;9(6):314-23 [PMID: 20048137]
  41. J Biol Chem. 2014 Apr 4;289(14):10069-83 [PMID: 24554700]
  42. J Exp Med. 2018 Jul 2;215(7):1777-1787 [PMID: 29934321]
  43. Mol Cell. 2015 Oct 15;60(2):319-27 [PMID: 26439302]
  44. Nature. 2006 Jul 6;442(7098):91-5 [PMID: 16728978]
  45. Mol Cell. 2007 Dec 14;28(5):823-37 [PMID: 18082607]
  46. Proc Natl Acad Sci U S A. 2012 Aug 7;109(32):12950-5 [PMID: 22837395]
  47. Nature. 2007 Aug 9;448(7154):718-22 [PMID: 17687328]
  48. Nat Commun. 2020 Mar 6;11(1):1222 [PMID: 32144273]
  49. Nat Struct Mol Biol. 2007 Nov;14(11):1025-1040 [PMID: 17984965]
  50. Nat Struct Mol Biol. 2012 Dec;19(12):1218-27 [PMID: 23211769]
  51. J Mol Biol. 2010 Jul 9;400(2):137-44 [PMID: 20452361]
  52. ACS Chem Biol. 2014 Dec 19;9(12):2864-74 [PMID: 25323450]
  53. Nucleic Acids Res. 2011 Nov;39(21):9061-71 [PMID: 21813457]
  54. J Biol Chem. 2015 Sep 18;290(38):22919-30 [PMID: 26229108]
  55. Nat Commun. 2014 May 23;5:3952 [PMID: 24853335]
  56. Structure. 2020 Jan 7;28(1):105-110.e3 [PMID: 31711755]
  57. J Biol Chem. 2019 May 31;294(22):8907-8917 [PMID: 31018966]
  58. J Cell Sci. 2011 Jul 1;124(Pt 13):2208-19 [PMID: 21670200]

Grants

  1. R01 GM125195/NIGMS NIH HHS
  2. R01 CA252707/NCI NIH HHS
  3. R01 GM135671/NIGMS NIH HHS
  4. R01 HL151334/NHLBI NIH HHS
  5. R01 AG067664/NIA NIH HHS
  6. R56 AG067664/NIA NIH HHS

MeSH Term

PHD Zinc Fingers
DNA-Binding Proteins
Histones
Plants
Protein Binding

Chemicals

DNA-Binding Proteins
Histones

Word Cloud

Created with Highcharts 10.0.0PHDH3fingershistonebindingnon-histoneDNAPlanthomeodomaincompriselargewell-establishedfamilyepigeneticreadersrecognizetypicalfingerbindsunmodifiedmethylatedamino-terminaltailinteractionhighlyspecificcanregulatedpost-translationalmodificationsPTMsdomainspresentproteinHoweversetrecentlyshownbindproteinsmimeticsreviewhighlightmolecularmechanismsinteractligandsaminoterminusdiscusssimilaritiesdifferencesengagementpartnersNon-histonefunctionsmechanism

Similar Articles

Cited By